[[query-dsl-term-query]] === Term query ++++ Term ++++ Returns documents that contain an *exact* term in a provided field. You can use the `term` query to find documents based on a precise value such as a price, a product ID, or a username. [WARNING] ==== Avoid using the `term` query for <> fields. By default, {es} changes the values of `text` fields as part of <>. This can make finding exact matches for `text` field values difficult. To search `text` field values, use the <> query instead. ==== [[term-query-ex-request]] ==== Example request [source,js] ---- GET /_search { "query": { "term": { "user": { "value": "Kimchy", "boost": 1.0 } } } } ---- // CONSOLE [[term-top-level-params]] ==== Top-level parameters for `term` ``:: Field you wish to search. [[term-field-params]] ==== Parameters for `` `value`:: Term you wish to find in the provided ``. To return a document, the term must exactly match the field value, including whitespace and capitalization. `boost`:: Floating point number used to decrease or increase the <> of a query. Default is `1.0`. Optional. + You can use the `boost` parameter to adjust relevance scores for searches containing two or more queries. + Boost values are relative to the default value of `1.0`. A boost value between `0` and `1.0` decreases the relevance score. A value greater than `1.0` increases the relevance score. [[term-query-notes]] ==== Notes [[avoid-term-query-text-fields]] ===== Avoid using the `term` query for `text` fields By default, {es} changes the values of `text` fields during analysis. For example, the default <> changes `text` field values as follows: * Removes most punctuation * Divides the remaining content into individual words, called <> * Lowercases the tokens To better search `text` fields, the `match` query also analyzes your provided search term before performing a search. This means the `match` query can search `text` fields for analyzed tokens rather than an exact term. The `term` query does *not* analyze the search term. The `term` query only searches for the *exact* term you provide. This means the `term` query may return poor or no results when searching `text` fields. To see the difference in search results, try the following example. . Create an index with a `text` field called `full_text`. + -- [source,js] ---- PUT my_index { "mappings" : { "properties" : { "full_text" : { "type" : "text" } } } } ---- // CONSOLE -- . Index a document with a value of `Quick Brown Foxes!` in the `full_text` field. + -- [source,js] ---- PUT my_index/_doc/1 { "full_text": "Quick Brown Foxes!" } ---- // CONSOLE // TEST[continued] Because `full_text` is a `text` field, {es} changes `Quick Brown Foxes!` to `[quick, brown, fox]` during analysis. -- . Use the `term` query to search for `Quick Brown Foxes!` in the `full_text` field. Include the `pretty` parameter so the response is more readable. + -- [source,js] ---- GET my_index/_search?pretty { "query": { "term": { "full_text": "Quick Brown Foxes!" } } } ---- // CONSOLE // TEST[continued] Because the `full_text` field no longer contains the *exact* term `Quick Brown Foxes!`, the `term` query search returns no results. -- . Use the `match` query to search for `Quick Brown Foxes!` in the `full_text` field. + -- //// [source,js] ---- POST my_index/_refresh ---- // CONSOLE // TEST[continued] //// [source,js] ---- GET my_index/_search?pretty { "query": { "match": { "full_text": "Quick Brown Foxes!" } } } ---- // CONSOLE // TEST[continued] Unlike the `term` query, the `match` query analyzes your provided search term, `Quick Brown Foxes!`, before performing a search. The `match` query then returns any documents containing the `quick`, `brown`, or `fox` tokens in the `full_text` field. Here's the response for the `match` query search containing the indexed document in the results. [source,js] ---- { "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.8630463, "hits" : [ { "_index" : "my_index", "_type" : "_doc", "_id" : "1", "_score" : 0.8630463, "_source" : { "full_text" : "Quick Brown Foxes!" } } ] } } ---- // TESTRESPONSE[s/"took" : 1/"took" : $body.took/] --