[role="xpack"] [testenv="basic"] [[transform-painless-examples]] === Painless examples for {transforms} ++++ Painless examples for {transforms} ++++ These examples demonstrate how to use Painless in {transforms}. You can learn more about the Painless scripting language in the {painless}/painless-guide.html[Painless guide]. * <> * <> * <> * <> * <> * <> NOTE: While the context of the following examples is the {transform} use case, the Painless scripts in the snippets below can be used in other {es} search aggregations, too. [discrete] [[painless-top-hits]] ==== Getting top hits by using scripted metric aggregation This snippet shows how to find the latest document, in other words the document with the earliest timestamp. From a technical perspective, it helps to achieve the function of a <> by using scripted metric aggregation in a {transform}, which provides a metric output. [source,js] -------------------------------------------------- "aggregations": { "latest_doc": { "scripted_metric": { "init_script": "state.timestamp_latest = 0L; state.last_doc = ''", <1> "map_script": """ <2> def current_date = doc['@timestamp'].getValue().toInstant().toEpochMilli(); if (current_date > state.timestamp_latest) {state.timestamp_latest = current_date; state.last_doc = new HashMap(params['_source']);} """, "combine_script": "return state", <3> "reduce_script": """ <4> def last_doc = ''; def timestamp_latest = 0L; for (s in states) {if (s.timestamp_latest > (timestamp_latest)) {timestamp_latest = s.timestamp_latest; last_doc = s.last_doc;}} return last_doc """ } } } -------------------------------------------------- // NOTCONSOLE <1> The `init_script` creates a long type `timestamp_latest` and a string type `last_doc` in the `state` object. <2> The `map_script` defines `current_date` based on the timestamp of the document, then compares `current_date` with `state.timestamp_latest`, finally returns `state.last_doc` from the shard. By using `new HashMap(...)` you copy the source document, this is important whenever you want to pass the full source object from one phase to the next. <3> The `combine_script` returns `state` from each shard. <4> The `reduce_script` iterates through the value of `s.timestamp_latest` returned by each shard and returns the document with the latest timestamp (`last_doc`). In the response, the top hit (in other words, the `latest_doc`) is nested below the `latest_doc` field. Check the <> for detailed explanation on the respective scripts. You can retrieve the last value in a similar way: [source,js] -------------------------------------------------- "aggregations": { "latest_value": { "scripted_metric": { "init_script": "state.timestamp_latest = 0L; state.last_value = ''", "map_script": """ def current_date = doc['date'].getValue().toInstant().toEpochMilli(); if (current_date > state.timestamp_latest) {state.timestamp_latest = current_date; state.last_value = params['_source']['value'];} """, "combine_script": "return state", "reduce_script": """ def last_value = ''; def timestamp_latest = 0L; for (s in states) {if (s.timestamp_latest > (timestamp_latest)) {timestamp_latest = s.timestamp_latest; last_value = s.last_value;}} return last_value """ } } } -------------------------------------------------- // NOTCONSOLE [discrete] [[painless-time-features]] ==== Getting time features as scripted fields This snippet shows how to extract time based features by using Painless in a {transform}. The snippet uses an index where `@timestamp` is defined as a `date` type field. [source,js] -------------------------------------------------- "aggregations": { "script_fields": { "hour_of_day": { <1> "script": { "lang": "painless", "source": """ ZonedDateTime date = doc['@timestamp'].value; <2> return date.getHour(); <3> """ } }, "month_of_year": { <4> "script": { "lang": "painless", "source": """ ZonedDateTime date = doc['@timestamp'].value; <5> return date.getMonthValue(); <6> """ } } }, ... } -------------------------------------------------- // NOTCONSOLE <1> Contains the Painless script that returns the hour of the day. <2> Sets `date` based on the timestamp of the document. <3> Returns the hour value from `date`. <4> Contains the Painless script that returns the month of the year. <5> Sets `date` based on the timestamp of the document. <6> Returns the month value from `date`. [discrete] [[painless-group-by]] ==== Using Painless in `group_by` It is possible to base the `group_by` property of a {transform} on the output of a script. The following example uses the {kib} sample web logs dataset. The goal here is to make the {transform} output easier to understand through normalizing the value of the fields that the data is grouped by. [source,console] -------------------------------------------------- POST _transform/_preview { "source": { "index": [ <1> "kibana_sample_data_logs" ] }, "pivot": { "group_by": { "agent": { "terms": { "script": { <2> "source": """String agent = doc['agent.keyword'].value; if (agent.contains("MSIE")) { return "internet explorer"; } else if (agent.contains("AppleWebKit")) { return "safari"; } else if (agent.contains('Firefox')) { return "firefox"; } else { return agent }""", "lang": "painless" } } } }, "aggregations": { <3> "200": { "filter": { "term": { "response": "200" } } }, "404": { "filter": { "term": { "response": "404" } } }, "503": { "filter": { "term": { "response": "503" } } } } }, "dest": { <4> "index": "pivot_logs" } } -------------------------------------------------- // TEST[skip:setup kibana sample data] <1> Specifies the source index or indices. <2> The script defines an `agent` string based on the `agent` field of the documents, then iterates through the values. If an `agent` field contains "MSIE", than the script returns "Internet Explorer". If it contains `AppleWebKit`, it returns "safari". It returns "firefox" if the field value contains "Firefox". Finally, in every other case, the value of the field is returned. <3> The aggregations object contains filters that narrow down the results to documents that contains `200`, `404`, or `503` values in the `response` field. <4> Specifies the destination index of the {transform}. The API returns the following result: [source,js] -------------------------------------------------- { "preview" : [ { "agent" : "firefox", "200" : 4931, "404" : 259, "503" : 172 }, { "agent" : "internet explorer", "200" : 3674, "404" : 210, "503" : 126 }, { "agent" : "safari", "200" : 4227, "404" : 332, "503" : 143 } ], "mappings" : { "properties" : { "200" : { "type" : "long" }, "agent" : { "type" : "keyword" }, "404" : { "type" : "long" }, "503" : { "type" : "long" } } } } -------------------------------------------------- // NOTCONSOLE You can see that the `agent` values are simplified so it is easier to interpret them. The table below shows how normalization modifies the output of the {transform} in our example compared to the non-normalized values. [width="50%"] |=== | Non-normalized `agent` value | Normalized `agent` value | "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)" | "internet explorer" | "Mozilla/5.0 (X11; Linux i686) AppleWebKit/534.24 (KHTML, like Gecko) Chrome/11.0.696.50 Safari/534.24" | "safari" | "Mozilla/5.0 (X11; Linux x86_64; rv:6.0a1) Gecko/20110421 Firefox/6.0a1" | "firefox" |=== [discrete] [[painless-bucket-script]] ==== Getting duration by using bucket script This example shows you how to get the duration of a session by client IP from a data log by using {ref}/search-aggregations-pipeline-bucket-script-aggregation.html[bucket script]. The example uses the {kib} sample web logs dataset. [source,console] -------------------------------------------------- PUT _data_frame/transforms/data_log { "source": { "index": "kibana_sample_data_logs" }, "dest": { "index": "data-logs-by-client" }, "pivot": { "group_by": { "machine.os": {"terms": {"field": "machine.os.keyword"}}, "machine.ip": {"terms": {"field": "clientip"}} }, "aggregations": { "time_frame.lte": { "max": { "field": "timestamp" } }, "time_frame.gte": { "min": { "field": "timestamp" } }, "time_length": { <1> "bucket_script": { "buckets_path": { <2> "min": "time_frame.gte.value", "max": "time_frame.lte.value" }, "script": "params.max - params.min" <3> } } } } } -------------------------------------------------- // TEST[skip:setup kibana sample data] <1> To define the length of the sessions, we use a bucket script. <2> The bucket path is a map of script variables and their associated path to the buckets you want to use for the variable. In this particular case, `min` and `max` are variables mapped to `time_frame.gte.value` and `time_frame.lte.value`. <3> Finally, the script substracts the start date of the session from the end date which results in the duration of the session. [discrete] [[painless-count-http]] ==== Counting HTTP responses by using scripted metric aggregation You can count the different HTTP response types in a web log data set by using scripted metric aggregation as part of the {transform}. The example below assumes that the HTTP response codes are stored as keywords in the `response` field of the documents. [source,js] -------------------------------------------------- "aggregations": { <1> "responses.counts": { <2> "scripted_metric": { <3> "init_script": "state.responses = ['error':0L,'success':0L,'other':0L]", <4> "map_script": """ <5> def code = doc['response.keyword'].value; if (code.startsWith('5') || code.startsWith('4')) { state.responses.error += 1 ; } else if(code.startsWith('2')) { state.responses.success += 1; } else { state.responses.other += 1; } """, "combine_script": "state.responses", <6> "reduce_script": """ <7> def counts = ['error': 0L, 'success': 0L, 'other': 0L]; for (responses in states) { counts.error += responses['error']; counts.success += responses['success']; counts.other += responses['other']; } return counts; """ } }, ... } -------------------------------------------------- // NOTCONSOLE <1> The `aggregations` object of the {transform} that contains all aggregations. <2> Object of the `scripted_metric` aggregation. <3> This `scripted_metric` performs a distributed operation on the web log data to count specific types of HTTP responses (error, success, and other). <4> The `init_script` creates a `responses` array in the `state` object with three properties (`error`, `success`, `other`) with long data type. <5> The `map_script` defines `code` based on the `response.keyword` value of the document, then it counts the errors, successes, and other responses based on the first digit of the responses. <6> The `combine_script` returns `state.responses` from each shard. <7> The `reduce_script` creates a `counts` array with the `error`, `success`, and `other` properties, then iterates through the value of `responses` returned by each shard and assigns the different response types to the appropriate properties of the `counts` object; error responses to the error counts, success responses to the success counts, and other responses to the other counts. Finally, returns the `counts` array with the response counts. [discrete] [[painless-compare]] ==== Comparing indices by using scripted metric aggregations This example shows how to compare the content of two indices by a {transform} that uses a scripted metric aggregation. [source,console] -------------------------------------------------- POST _transform/_preview { "id" : "index_compare", "source" : { <1> "index" : [ "index1", "index2" ], "query" : { "match_all" : { } } }, "dest" : { <2> "index" : "compare" }, "pivot" : { "group_by" : { "unique-id" : { "terms" : { "field" : "" <3> } } }, "aggregations" : { "compare" : { <4> "scripted_metric" : { "init_script" : "", "map_script" : "state.doc = new HashMap(params['_source'])", <5> "combine_script" : "return state", <6> "reduce_script" : """ <7> if (states.size() != 2) { return "count_mismatch" } if (states.get(0).equals(states.get(1))) { return "match" } else { return "mismatch" } """ } } } } } -------------------------------------------------- // TEST[skip:setup kibana sample data] <1> The indices referenced in the `source` object are compared to each other. <2> The `dest` index contains the results of the comparison. <3> The `group_by` field needs to be a unique identifier for each document. <4> Object of the `scripted_metric` aggregation. <5> The `map_script` defines `doc` in the state object. By using `new HashMap(...)` you copy the source document, this is important whenever you want to pass the full source object from one phase to the next. <6> The `combine_script` returns `state` from each shard. <7> The `reduce_script` checks if the size of the indices are equal. If they are not equal, than it reports back a `count_mismatch`. Then it iterates through all the values of the two indices and compare them. If the values are equal, then it returns a `match`, otherwise returns a `mismatch`.