910 lines
28 KiB
Plaintext
910 lines
28 KiB
Plaintext
[[ingest]]
|
|
== Ingest Plugin
|
|
|
|
The ingest plugin can be used to pre-process documents before the actual indexing takes place.
|
|
This pre-processing happens by the ingest plugin that intercepts bulk and index requests, applies the
|
|
transformations and then passes the documents back to the index or bulk APIs.
|
|
|
|
The ingest plugin is disabled by default. In order to enable the ingest plugin the following
|
|
setting should be configured in the elasticsearch.yml file:
|
|
|
|
[source,yaml]
|
|
--------------------------------------------------
|
|
node.ingest: true
|
|
--------------------------------------------------
|
|
|
|
The ingest plugin can be installed and enabled on any node. It is possible to run ingest
|
|
on an master and or data node or have dedicated client nodes that run with ingest.
|
|
|
|
In order to pre-process document before indexing the `pipeline` parameter should be used
|
|
on an index or bulk request to tell the ingest plugin what pipeline is going to be used.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT /my-index/my-type/my-id?ingest=my_pipeline_id
|
|
{
|
|
...
|
|
}
|
|
--------------------------------------------------
|
|
// AUTOSENSE
|
|
|
|
=== Processors
|
|
|
|
==== Set processor
|
|
Sets one field and associates it with the specified value. If the field already exists,
|
|
its value will be replaced with the provided one.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field1": 582.1
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Append processor
|
|
Appends one or more values to an existing array if the field already exists and it is an array.
|
|
Converts a scalar to an array and appends one or more values to it if the field exists and it is a scalar.
|
|
Creates an array containing the provided values if the fields doesn't exist.
|
|
Accepts a single value or an array of values.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"append": {
|
|
"field1": ["item2", "item3", "item4"]
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Remove processor
|
|
Removes an existing field. If the field doesn't exist, an exception will be thrown
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"remove": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Rename processor
|
|
Renames an existing field. If the field doesn't exist, an exception will be thrown. Also, the new field
|
|
name must not exist.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"rename": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
|
|
==== Convert processor
|
|
Converts an existing field's value to a different type, like turning a string to an integer.
|
|
If the field value is an array, all members will be converted.
|
|
|
|
The supported types include: `integer`, `float`, `string`, and `boolean`.
|
|
|
|
`boolean` will set the field to true if its string value is equal to `true` (ignore case), to
|
|
false if its string value is equal to `false` (ignore case) and it will throw exception otherwise.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"convert": {
|
|
"field" : "foo"
|
|
"type": "integer"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Gsub processor
|
|
Converts a string field by applying a regular expression and a replacement.
|
|
If the field is not a string, the processor will throw an exception.
|
|
|
|
This configuration takes a `field` for the field name, `pattern` for the
|
|
pattern to be replaced, and `replacement` for the string to replace the matching patterns with.
|
|
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"gsub": {
|
|
"field": "field1",
|
|
"pattern": "\.",
|
|
"replacement": "-"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Join processor
|
|
Joins each element of an array into a single string using a separator character between each element.
|
|
Throws error when the field is not an array.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"join": {
|
|
"field": "joined_array_field",
|
|
"separator": "-"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Split processor
|
|
Split a field to an array using a separator character. Only works on string fields.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"split": {
|
|
"field": ","
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Lowercase processor
|
|
Converts a string to its lowercase equivalent.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"lowercase": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Uppercase processor
|
|
Converts a string to its uppercase equivalent.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"uppercase": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Trim processor
|
|
Trims whitespace from field. NOTE: this only works on leading and trailing whitespaces.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"trim": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Grok Processor
|
|
|
|
The Grok Processor extracts structured fields out of a single text field within a document. You choose which field to
|
|
extract matched fields from, as well as the Grok Pattern you expect will match. A Grok Pattern is like a regular
|
|
expression that supports aliased expressions that can be reused.
|
|
|
|
This tool is perfect for syslog logs, apache and other webserver logs, mysql logs, and in general, any log format
|
|
that is generally written for humans and not computer consumption.
|
|
|
|
The processor comes packaged with over 120 reusable patterns that are located at `$ES_HOME/config/ingest/grok/patterns`.
|
|
Here, you can add your own custom grok pattern files with custom grok expressions to be used by the processor.
|
|
|
|
If you need help building patterns to match your logs, you will find the <http://grokdebug.herokuapp.com> and
|
|
<http://grokconstructor.appspot.com/> applications quite useful!
|
|
|
|
===== Grok Basics
|
|
|
|
Grok sits on top of regular expressions, so any regular expressions are valid in grok as well.
|
|
The regular expression library is Oniguruma, and you can see the full supported regexp syntax
|
|
https://github.com/kkos/oniguruma/blob/master/doc/RE[on the Onigiruma site].
|
|
|
|
Grok works by leveraging this regular expression language to allow naming existing patterns and combining them into more
|
|
complex patterns that match your fields.
|
|
|
|
The syntax for re-using a grok pattern comes in three forms: `%{SYNTAX:SEMANTIC}`, `%{SYNTAX}`, `%{SYNTAX:SEMANTIC:TYPE}`.
|
|
|
|
The `SYNTAX` is the name of the pattern that will match your text. For example, `3.44` will be matched by the `NUMBER`
|
|
pattern and `55.3.244.1` will be matched by the `IP` pattern. The syntax is how you match. `NUMBER` and `IP` are both
|
|
patterns that are provided within the default patterns set.
|
|
|
|
The `SEMANTIC` is the identifier you give to the piece of text being matched. For example, `3.44` could be the
|
|
duration of an event, so you could call it simply `duration`. Further, a string `55.3.244.1` might identify
|
|
the `client` making a request.
|
|
|
|
The `TYPE` is the type you wish to cast your named field. `int` and `float` are currently the only types supported for coercion.
|
|
|
|
For example, here is a grok pattern that would match the above example given. We would like to match a text with the following
|
|
contents:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
3.44 55.3.244.1
|
|
--------------------------------------------------
|
|
|
|
We may know that the above message is a number followed by an IP-address. We can match this text with the following
|
|
Grok expression.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
%{NUMBER:duration} %{IP:client}
|
|
--------------------------------------------------
|
|
|
|
===== Custom Patterns and Pattern Files
|
|
|
|
The Grok Processor comes pre-packaged with a base set of pattern files. These patterns may not always have
|
|
what you are looking for. These pattern files have a very basic format. Each line describes a named pattern with
|
|
the following format:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
NAME ' '+ PATTERN '\n'
|
|
--------------------------------------------------
|
|
|
|
You can add this pattern to an existing file, or add your own file in the patterns directory here: `$ES_HOME/config/ingest/grok/patterns`.
|
|
The Ingest Plugin will pick up files in this directory to be loaded into the grok processor's known patterns. These patterns are loaded
|
|
at startup, so you will need to do a restart your ingest node if you wish to update these files while running.
|
|
|
|
Example snippet of pattern definitions found in the `grok-patterns` patterns file:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
YEAR (?>\d\d){1,2}
|
|
HOUR (?:2[0123]|[01]?[0-9])
|
|
MINUTE (?:[0-5][0-9])
|
|
SECOND (?:(?:[0-5]?[0-9]|60)(?:[:.,][0-9]+)?)
|
|
TIME (?!<[0-9])%{HOUR}:%{MINUTE}(?::%{SECOND})(?![0-9])
|
|
--------------------------------------------------
|
|
|
|
===== Using Grok Processor in a Pipeline
|
|
|
|
[[grok-options]]
|
|
.Grok Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `match_field` | yes | - | The field to use for grok expression parsing
|
|
| `match_pattern` | yes | - | The grok expression to match and extract named captures with
|
|
| `pattern_definitions` | no | - | A map of pattern-name and pattern tuples defining custom patterns to be used by the current processor. Patterns matching existing names will override the pre-existing definition.
|
|
|======
|
|
|
|
Here is an example of using the provided patterns to extract out and name structured fields from a string field in
|
|
a document.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"message": "55.3.244.1 GET /index.html 15824 0.043"
|
|
}
|
|
--------------------------------------------------
|
|
|
|
The pattern for this could be
|
|
|
|
[source]
|
|
--------------------------------------------------
|
|
%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}
|
|
--------------------------------------------------
|
|
|
|
An example pipeline for processing the above document using Grok:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors": [
|
|
{
|
|
"grok": {
|
|
"match_field": "message",
|
|
"match_pattern": "%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
This pipeline will insert these named captures as new fields within the document, like so:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"message": "55.3.244.1 GET /index.html 15824 0.043",
|
|
"client": "55.3.244.1",
|
|
"method": "GET",
|
|
"request": "/index.html",
|
|
"bytes": 15824,
|
|
"duration": "0.043"
|
|
}
|
|
--------------------------------------------------
|
|
|
|
An example of a pipeline specifying custom pattern definitions:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors": [
|
|
{
|
|
"grok": {
|
|
"match_field": "message",
|
|
"match_pattern": "my %{FAVORITE_DOG:dog} is colored %{RGB:color}"
|
|
"pattern_definitions" : {
|
|
"FAVORITE_DOG" : "beagle",
|
|
"RGB" : "RED|GREEN|BLUE"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
|
|
==== Geoip processor
|
|
|
|
The GeoIP processor adds information about the geographical location of IP addresses, based on data from the Maxmind databases.
|
|
This processor adds this information by default under the `geoip` field.
|
|
|
|
The ingest plugin ships by default with the GeoLite2 City and GeoLite2 Country geoip2 databases from Maxmind made available
|
|
under the CCA-ShareAlike 3.0 license. For more details see, http://dev.maxmind.com/geoip/geoip2/geolite2/
|
|
|
|
The GeoIP processor can run with other geoip2 databases from Maxmind. The files must be copied into the geoip config directory
|
|
and the `database_file` option should be used to specify the filename of the custom database. The geoip config directory
|
|
is located at `$ES_HOME/config/ingest/geoip` and holds the shipped databases too.
|
|
|
|
[[geoip-options]]
|
|
.Geoip options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `source_field` | yes | - | The field to get the ip address or hostname from for the geographical lookup.
|
|
| `target_field` | no | geoip | The field that will hold the geographical information looked up from the Maxmind database.
|
|
| `database_file` | no | GeoLite2-City.mmdb | The database filename in the geoip config directory. The ingest plugin ships with the GeoLite2-City.mmdb and GeoLite2-Country.mmdb files.
|
|
| `fields` | no | [`continent_name`, `country_iso_code`, `region_name`, `city_name`, `location`] <1> | Controls what properties are added to the `target_field` based on the geoip lookup.
|
|
|======
|
|
|
|
<1> Depends on what is available in `database_field`:
|
|
* If the GeoLite2 City database is used then the following fields may be added under the `target_field`: `ip`,
|
|
`country_iso_code`, `country_name`, `continent_name`, `region_name`, `city_name`, `timezone`, `latitude`, `longitude`
|
|
and `location`. The fields actually added depend on what has been found and which fields were configured in `fields`.
|
|
* If the GeoLite2 Country database is used then the following fields may be added under the `target_field`: `ip`,
|
|
`country_iso_code`, `country_name` and `continent_name`.The fields actually added depend on what has been found and which fields were configured in `fields`.
|
|
|
|
An example that uses the default city database and adds the geographical information to the `geoip` field based on the `ip` field:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors" : [
|
|
{
|
|
"geoip" : {
|
|
"source_field" : "ip"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
An example that uses the default country database and add the geographical information to the `geo` field based on the `ip` field`:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors" : [
|
|
{
|
|
"geoip" : {
|
|
"source_field" : "ip",
|
|
"target_field" : "geo",
|
|
"database_file" : "GeoLite2-Country.mmdb"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Date processor
|
|
|
|
The date processor is used for parsing dates from fields, and then using that date or timestamp as the timestamp for that document.
|
|
The date processor adds by default the parsed date as a new field called `@timestamp`, configurable by setting the `target_field`
|
|
configuration parameter. Multiple date formats are supported as part of the same date processor definition. They will be used
|
|
sequentially to attempt parsing the date field, in the same order they were defined as part of the processor definition.
|
|
|
|
[[date-options]]
|
|
.Date options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `match_field` | yes | - | The field to get the date from.
|
|
| `target_field` | no | @timestamp | The field that will hold the parsed date.
|
|
| `match_formats` | yes | - | Array of the expected date formats. Can be a joda pattern or one of the following formats: ISO8601, UNIX, UNIX_MS, TAI64N.
|
|
| `timezone` | no | UTC | The timezone to use when parsing the date.
|
|
| `locale` | no | ENGLISH | The locale to use when parsing the date, relevant when parsing month names or week days.
|
|
|======
|
|
|
|
An example that adds the parsed date to the `timestamp` field based on the `initial_date` field:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors" : [
|
|
{
|
|
"date" : {
|
|
"match_field" : "initial_date",
|
|
"target_field" : "timestamp",
|
|
"match_formats" : ["dd/MM/yyyy hh:mm:ss"],
|
|
"timezone" : "Europe/Amsterdam"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
==== Fail processor
|
|
The Fail Processor is used to raise an exception. This is useful for when
|
|
a user expects a pipeline to fail and wishes to relay a specific message
|
|
to the requester.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"fail": {
|
|
"message": "an error message"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
=== Accessing data in pipelines
|
|
|
|
Processors in pipelines have read and write access to documents that pass through the pipeline.
|
|
The fields in the source of a document and its metadata fields are accessible.
|
|
|
|
Accessing a field in the source is straightforward and one can refer to fields by
|
|
their name. For example:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "my_field"
|
|
"value": 582.1
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
On top of this fields from the source are always accessible via the `_source` prefix:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "_source.my_field"
|
|
"value": 582.1
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
Metadata fields can also be accessed in the same way as fields from the source. This
|
|
is possible because Elasticsearch doesn't allow fields in the source that have the
|
|
same name as metadata fields.
|
|
|
|
The following example sets the id of a document to `1`:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "_id"
|
|
"value": "1"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
The following metadata fields are accessible by a processor: `_index`, `_type`, `_id`, `_routing`, `_parent`,
|
|
`_timestamp` and `_ttl`.
|
|
|
|
Beyond metadata fields and source fields, the ingest plugin also adds ingest metadata to documents being processed.
|
|
These metadata properties are accessible under the `_ingest` key. Currently the ingest plugin adds the ingest timestamp
|
|
under `_ingest.timestamp` key to the ingest metadata, which is the time the ingest plugin received the index or bulk
|
|
request to pre-process. But any processor is free to add more ingest related metadata to it. Ingest metadata is transient
|
|
and is lost after a document has been processed by the pipeline and thus ingest metadata won't be indexed.
|
|
|
|
The following example adds a field with the name `received` and the value is the ingest timestamp:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "received"
|
|
"value": "{{_ingest.timestamp}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
As opposed to Elasticsearch metadata fields, the ingest metadata field name _ingest can be used as a valid field name
|
|
in the source of a document. Use _source._ingest to refer to it, otherwise _ingest will be interpreted as ingest
|
|
metadata fields by the ingest plugin.
|
|
|
|
A number of processor settings also support templating. Settings that support templating can have zero or more
|
|
template snippets. A template snippet begins with `{{` and ends with `}}`.
|
|
Accessing fields and metafields in templates is exactly the same as via regular processor field settings.
|
|
|
|
In this example a field by the name `field_c` is added and its value is a concatenation of
|
|
the values of `field_a` and `field_b`.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "field_c"
|
|
"value": "{{field_a}} {{field_b}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
The following example changes the index a document is going to be indexed into. The index a document will be redirected
|
|
to depends on the field in the source with name `geoip.country_iso_code`.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "_index"
|
|
"value": "{{geoip.country_iso_code}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
=== Ingest APIs
|
|
|
|
==== Put pipeline API
|
|
|
|
The put pipeline api adds pipelines and updates existing pipelines in the cluster.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT _ingest/pipeline/my-pipeline-id
|
|
{
|
|
"description" : "describe pipeline",
|
|
"processors" : [
|
|
{
|
|
"simple" : {
|
|
// settings
|
|
}
|
|
},
|
|
// other processors
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// AUTOSENSE
|
|
|
|
NOTE: The put pipeline api also instructs all ingest nodes to reload their in-memory representation of pipelines, so that
|
|
pipeline changes take immediately in effect.
|
|
|
|
==== Get pipeline API
|
|
|
|
The get pipeline api returns pipelines based on id. This api always returns a local reference of the pipeline.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
GET _ingest/pipeline/my-pipeline-id
|
|
--------------------------------------------------
|
|
// AUTOSENSE
|
|
|
|
Example response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"my-pipeline-id": {
|
|
"_source" : {
|
|
"description": "describe pipeline",
|
|
"processors": [
|
|
{
|
|
"simple" : {
|
|
// settings
|
|
}
|
|
},
|
|
// other processors
|
|
]
|
|
},
|
|
"_version" : 0
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
For each returned pipeline the source and the version is returned.
|
|
The version is useful for knowing what version of the pipeline the node has.
|
|
Multiple ids can be provided at the same time. Also wildcards are supported.
|
|
|
|
==== Delete pipeline API
|
|
|
|
The delete pipeline api deletes pipelines by id.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
DELETE _ingest/pipeline/my-pipeline-id
|
|
--------------------------------------------------
|
|
// AUTOSENSE
|
|
|
|
==== Simulate pipeline API
|
|
|
|
The simulate pipeline api executes a specific pipeline against
|
|
the set of documents provided in the body of the request.
|
|
|
|
A simulate request may call upon an existing pipeline to be executed
|
|
against the provided documents, or supply a pipeline definition in
|
|
the body of the request.
|
|
|
|
Here is the structure of a simulate request with a provided pipeline:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline" : {
|
|
// pipeline definition here
|
|
},
|
|
"docs" : [
|
|
{ /** first document **/ },
|
|
{ /** second document **/ },
|
|
// ...
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
Here is the structure of a simulate request against a pre-existing pipeline:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/my-pipeline-id/_simulate
|
|
{
|
|
"docs" : [
|
|
{ /** first document **/ },
|
|
{ /** second document **/ },
|
|
// ...
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
|
|
Here is an example simulate request with a provided pipeline and its response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline" :
|
|
{
|
|
"description": "_description",
|
|
"processors": [
|
|
{
|
|
"set" : {
|
|
"field" : "field2",
|
|
"value" : "_value"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs": [
|
|
{
|
|
"_index": "index",
|
|
"_type": "type",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "bar"
|
|
}
|
|
},
|
|
{
|
|
"_index": "index",
|
|
"_type": "type",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "rab"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// AUTOSENSE
|
|
|
|
response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs": [
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_ttl": null,
|
|
"_parent": null,
|
|
"_index": "index",
|
|
"_routing": null,
|
|
"_type": "type",
|
|
"_timestamp": null,
|
|
"_source": {
|
|
"field2": "_value",
|
|
"foo": "bar"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-01-04T23:53:27.186+0000"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_ttl": null,
|
|
"_parent": null,
|
|
"_index": "index",
|
|
"_routing": null,
|
|
"_type": "type",
|
|
"_timestamp": null,
|
|
"_source": {
|
|
"field2": "_value",
|
|
"foo": "rab"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-01-04T23:53:27.186+0000"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
|
|
It is often useful to see how each processor affects the ingest document
|
|
as it is passed through the pipeline. To see the intermediate results of
|
|
each processor in the simulat request, a `verbose` parameter may be added
|
|
to the request
|
|
|
|
Here is an example verbose request and its response:
|
|
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate?verbose
|
|
{
|
|
"pipeline" :
|
|
{
|
|
"description": "_description",
|
|
"processors": [
|
|
{
|
|
"set" : {
|
|
"field" : "field2",
|
|
"value" : "_value2"
|
|
}
|
|
},
|
|
{
|
|
"set" : {
|
|
"field" : "field3",
|
|
"value" : "_value3"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs": [
|
|
{
|
|
"_index": "index",
|
|
"_type": "type",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "bar"
|
|
}
|
|
},
|
|
{
|
|
"_index": "index",
|
|
"_type": "type",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "rab"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// AUTOSENSE
|
|
|
|
response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs": [
|
|
{
|
|
"processor_results": [
|
|
{
|
|
"processor_id": "processor[set]-0",
|
|
"doc": {
|
|
"_id": "id",
|
|
"_ttl": null,
|
|
"_parent": null,
|
|
"_index": "index",
|
|
"_routing": null,
|
|
"_type": "type",
|
|
"_timestamp": null,
|
|
"_source": {
|
|
"field2": "_value2",
|
|
"foo": "bar"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-01-05T00:02:51.383+0000"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"processor_id": "processor[set]-1",
|
|
"doc": {
|
|
"_id": "id",
|
|
"_ttl": null,
|
|
"_parent": null,
|
|
"_index": "index",
|
|
"_routing": null,
|
|
"_type": "type",
|
|
"_timestamp": null,
|
|
"_source": {
|
|
"field3": "_value3",
|
|
"field2": "_value2",
|
|
"foo": "bar"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-01-05T00:02:51.383+0000"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"processor_results": [
|
|
{
|
|
"processor_id": "processor[set]-0",
|
|
"doc": {
|
|
"_id": "id",
|
|
"_ttl": null,
|
|
"_parent": null,
|
|
"_index": "index",
|
|
"_routing": null,
|
|
"_type": "type",
|
|
"_timestamp": null,
|
|
"_source": {
|
|
"field2": "_value2",
|
|
"foo": "rab"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-01-05T00:02:51.384+0000"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"processor_id": "processor[set]-1",
|
|
"doc": {
|
|
"_id": "id",
|
|
"_ttl": null,
|
|
"_parent": null,
|
|
"_index": "index",
|
|
"_routing": null,
|
|
"_type": "type",
|
|
"_timestamp": null,
|
|
"_source": {
|
|
"field3": "_value3",
|
|
"field2": "_value2",
|
|
"foo": "rab"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-01-05T00:02:51.384+0000"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|