158 lines
4.4 KiB
Plaintext
158 lines
4.4 KiB
Plaintext
[source,Painless]
|
|
----
|
|
POST _watcher/watch/_execute
|
|
{
|
|
"watch" : {
|
|
"metadata" : { "high_threshold": 50000, "low_threshold": 15000 },
|
|
"trigger" : { "schedule" : { "interval" : "24h" } },
|
|
"input" : {
|
|
"search" : {
|
|
"request" : {
|
|
"indices" : [ "seats" ],
|
|
"body" : {
|
|
"query" : {
|
|
"term": { "sold": "true"}
|
|
},
|
|
"aggs" : {
|
|
"theatres" : {
|
|
"terms" : { "field" : "play" },
|
|
"aggs" : {
|
|
"money" : {
|
|
"sum": { "field" : "cost" }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"condition" : {
|
|
"script" :
|
|
"""
|
|
return ctx.payload.aggregations.theatres.buckets.stream()
|
|
.anyMatch(theatre -> theatre.money.value < ctx.metadata.low_threshold ||
|
|
theatre.money.value > ctx.metadata.high_threshold)
|
|
"""
|
|
},
|
|
"transform" : {
|
|
"script":
|
|
"""
|
|
return [
|
|
'money_makers': ctx.payload.aggregations.theatres.buckets.stream()
|
|
.filter(t -> {
|
|
return t.money.value > ctx.metadata.high_threshold
|
|
})
|
|
.map(t -> {
|
|
return ['play': t.key, 'total_value': t.money.value ]
|
|
}).collect(Collectors.toList()),
|
|
'duds' : ctx.payload.aggregations.theatres.buckets.stream()
|
|
.filter(t -> {
|
|
return t.money.value < ctx.metadata.low_threshold
|
|
})
|
|
.map(t -> {
|
|
return ['play': t.key, 'total_value': t.money.value ]
|
|
}).collect(Collectors.toList())
|
|
]
|
|
"""
|
|
},
|
|
"actions" : {
|
|
"log_money_makers" : {
|
|
"condition": {
|
|
"script" : "return ctx.payload.money_makers.size() > 0"
|
|
},
|
|
"transform": {
|
|
"script" :
|
|
"""
|
|
def formatter = NumberFormat.getCurrencyInstance();
|
|
return [
|
|
'plays_value': ctx.payload.money_makers.stream()
|
|
.map(t-> formatter.format(t.total_value) + ' for the play ' + t.play)
|
|
.collect(Collectors.joining(", "))
|
|
]
|
|
"""
|
|
},
|
|
"logging" : {
|
|
"text" : "The following plays contain the highest grossing total income: {{ctx.payload.plays_value}}"
|
|
}
|
|
},
|
|
"log_duds" : {
|
|
"condition": {
|
|
"script" : "return ctx.payload.duds.size() > 0"
|
|
},
|
|
"transform": {
|
|
"script" :
|
|
"""
|
|
def formatter = NumberFormat.getCurrencyInstance();
|
|
return [
|
|
'plays_value': ctx.payload.duds.stream()
|
|
.map(t-> formatter.format(t.total_value) + ' for the play ' + t.play)
|
|
.collect(Collectors.joining(", "))
|
|
]
|
|
"""
|
|
},
|
|
"logging" : {
|
|
"text" : "The following plays need more advertising due to their low total income: {{ctx.payload.plays_value}}"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
|
|
The following example shows the use of metadata and transforming dates into a readable format.
|
|
|
|
[source,Painless]
|
|
----
|
|
POST _xpack/watcher/watch/_execute
|
|
{
|
|
"watch" : {
|
|
"metadata" : { "min_hits": 10000 },
|
|
"trigger" : { "schedule" : { "interval" : "24h" } },
|
|
"input" : {
|
|
"search" : {
|
|
"request" : {
|
|
"indices" : [ "seats" ],
|
|
"body" : {
|
|
"query" : {
|
|
"term": { "sold": "true"}
|
|
},
|
|
"aggs" : {
|
|
"theatres" : {
|
|
"terms" : { "field" : "play" },
|
|
"aggs" : {
|
|
"money" : {
|
|
"sum": { "field" : "cost" }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"condition" : {
|
|
"script" :
|
|
"""
|
|
return ctx.payload.hits.total > ctx.metadata.min_hits
|
|
"""
|
|
},
|
|
"transform" : {
|
|
"script" :
|
|
"""
|
|
def theDate = ZonedDateTime.ofInstant(ctx.execution_time.toInstant(), ctx.execution_time.getZone());
|
|
return ['human_date': DateTimeFormatter.RFC_1123_DATE_TIME.format(theDate),
|
|
'aggregations': ctx.payload.aggregations]
|
|
"""
|
|
},
|
|
"actions" : {
|
|
"my_log" : {
|
|
"logging" : {
|
|
"text" : "The watch was successfully executed on {{ctx.payload.human_date}} and contained {{ctx.payload.aggregations.theatres.buckets.size}} buckets"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|