mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-02-08 14:05:27 +00:00
When deleting or creating a snapshot for a given shard, elasticsearch usually starts by listing all the existing snapshotted files in the repository. Then it computes a diff and deletes the snapshotted files that are not needed anymore. During this deletion, an exception is thrown if the file to be deleted does not exist anymore. This behavior is challenging with cloud based repository implementations like S3 where a file that has been deleted can still appear in the bucket for few seconds/minutes (because the deletion can take some time to be fully replicated on S3). If the deleted file appears in the listing of files, then the following deletion will fail with a NoSuchFileException and the snapshot will be partially created/deleted. This pull request makes the deletion of these files a bit less strict, ie not failing if the file we want to delete does not exist anymore. It introduces a new BlobContainer.deleteIgnoringIfNotExists() method that can be used at some specific places where not failing when deleting a file is considered harmless. Closes #28322
The Elasticsearch docs are in AsciiDoc format and can be built using the Elasticsearch documentation build process. See: https://github.com/elastic/docs Snippets marked with `// CONSOLE` are automatically annotated with "VIEW IN CONSOLE" and "COPY AS CURL" in the documentation and are automatically tested by the command `gradle :docs:check`. To test just the docs from a single page, use e.g. `gradle :docs:check -Dtests.method="\*rollover*"`. By default each `// CONSOLE` snippet runs as its own isolated test. You can manipulate the test execution in the following ways: * `// TEST`: Explicitly marks a snippet as a test. Snippets marked this way are tests even if they don't have `// CONSOLE` but usually `// TEST` is used for its modifiers: * `// TEST[s/foo/bar/]`: Replace `foo` with `bar` in the generated test. This should be used sparingly because it makes the snippet "lie". Sometimes, though, you can use it to make the snippet more clear more clear. Keep in mind the that if there are multiple substitutions then they are applied in the order that they are defined. * `// TEST[catch:foo]`: Used to expect errors in the requests. Replace `foo` with `request` to expect a 400 error, for example. If the snippet contains multiple requests then only the last request will expect the error. * `// TEST[continued]`: Continue the test started in the last snippet. Between tests the nodes are cleaned: indexes are removed, etc. This prevents that from happening between snippets because the two snippets are a single test. This is most useful when you have text and snippets that work together to tell the story of some use case because it merges the snippets (and thus the use case) into one big test. * `// TEST[skip:reason]`: Skip this test. Replace `reason` with the actual reason to skip the test. Snippets without `// TEST` or `// CONSOLE` aren't considered tests anyway but this is useful for explicitly documenting the reason why the test shouldn't be run. * `// TEST[setup:name]`: Run some setup code before running the snippet. This is useful for creating and populating indexes used in the snippet. The setup code is defined in `docs/build.gradle`. * `// TEST[warning:some warning]`: Expect the response to include a `Warning` header. If the response doesn't include a `Warning` header with the exact text then the test fails. If the response includes `Warning` headers that aren't expected then the test fails. * `// TESTRESPONSE`: Matches this snippet against the body of the response of the last test. If the response is JSON then order is ignored. If you add `// TEST[continued]` to the snippet after `// TESTRESPONSE` it will continue in the same test, allowing you to interleave requests with responses to check. * `// TESTRESPONSE[s/foo/bar/]`: Substitutions. See `// TEST[s/foo/bar]` for how it works. These are much more common than `// TEST[s/foo/bar]` because they are useful for eliding portions of the response that are not pertinent to the documentation. * One interesting difference here is that you often want to match against the response from Elasticsearch. To do that you can reference the "body" of the response like this: `// TESTRESPONSE[s/"took": 25/"took": $body.took/]`. Note the `$body` string. This says "I don't expect that 25 number in the response, just match against what is in the response." Instead of writing the path into the response after `$body` you can write `$_path` which "figures out" the path. This is especially useful for making sweeping assertions like "I made up all the numbers in this example, don't compare them" which looks like `// TESTRESPONSE[s/\d+/$body.$_path/]`. * `// TESTRESPONSE[_cat]`: Add substitutions for testing `_cat` responses. Use this after all other substitutions so it doesn't make other substitutions difficult. * `// TESTSETUP`: Marks this snippet as the "setup" for all other snippets in this file. This is a somewhat natural way of structuring documentation. You say "this is the data we use to explain this feature" then you add the snippet that you mark `// TESTSETUP` and then every snippet will turn into a test that runs the setup snippet first. See the "painless" docs for a file that puts this to good use. This is fairly similar to `// TEST[setup:name]` but rather than the setup defined in `docs/build.gradle` the setup is defined right in the documentation file. Any place you can use json you can use elements like `$body.path.to.thing` which is replaced on the fly with the contents of the thing at `path.to.thing` in the last response.