mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-03-09 14:34:43 +00:00
When the engine is asked for historical operations, we check if some of the requested operations are not yet refreshed and if so we refresh before returning the operations. The refresh check is based on capturing the local checkpoint before each refresh and comparing that value to the one requested when `newChangesSnapshot` was called. If the requested range is above the captured local checkpoint we issue a refresh. This can currently cause unneeded extra refreshes if the method is called concurrently which may cause unwanted degradation in indexing performance. This is especially relevant for CCR where we always ask for a range below the global checkpoint. That range is guaranteed to be below the local checkpoint of the shard and one refresh is enough to serve multiple changes requests. This commit fixes this by introducing a dedicated mutex to make sure the test for whether a refresh is needed actually wait for concurrents for concurrent refreshes that were caused by another change refresh. Note that this is not a big change in semantics as refreshes are serialized by lucene anyway. I also opted not to keep the synchronization to the changes snapshot request only even if in theory we can apply it to all refreshes, not matter where they come from.
h1. Elasticsearch h2. A Distributed RESTful Search Engine h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch Elasticsearch is a distributed RESTful search engine built for the cloud. Features include: * Distributed and Highly Available Search Engine. ** Each index is fully sharded with a configurable number of shards. ** Each shard can have one or more replicas. ** Read / Search operations performed on any of the replica shards. * Multi Tenant. ** Support for more than one index. ** Index level configuration (number of shards, index storage, ...). * Various set of APIs ** HTTP RESTful API ** Native Java API. ** All APIs perform automatic node operation rerouting. * Document oriented ** No need for upfront schema definition. ** Schema can be defined for customization of the indexing process. * Reliable, Asynchronous Write Behind for long term persistency. * (Near) Real Time Search. * Built on top of Lucene ** Each shard is a fully functional Lucene index ** All the power of Lucene easily exposed through simple configuration / plugins. * Per operation consistency ** Single document level operations are atomic, consistent, isolated and durable. h2. Getting Started First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about. h3. Requirements You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information. h3. Installation * "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution. * Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows. * Run @curl -X GET http://localhost:9200/@. * Start more servers ... h3. Indexing Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically): <pre> curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d ' { "user": "elastic", "post_date": "2010-01-15T01:46:38", "message": "Building the site, should be kewl" }' </pre> Now, let's see if the information was added by GETting it: <pre> curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true' curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true' curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true' </pre> h3. Searching Mmm search..., shouldn't it be elastic? Let's find all the tweets that @kimchy@ posted: <pre> curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true' </pre> We can also use the JSON query language Elasticsearch provides instead of a query string: <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match" : { "user": "kimchy" } } }' </pre> Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well): <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> We can also do range search (the @post_date@ was automatically identified as date) <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "range" : { "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" } } } }' </pre> There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser. h3. Multi Tenant - Indices and Types Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data. Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user. Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case: <pre> curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' </pre> The above will index information into the @kimchy@ index. Each user will get their own special index. Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well): <pre> curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d ' { "index" : { "number_of_shards" : 1, "number_of_replicas" : 1 } }' </pre> Search (and similar operations) are multi index aware. This means that we can easily search on more than one index (twitter user), for example: <pre> curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> Or on all the indices: <pre> curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> {One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends). h3. Distributed, Highly Available Let's face it, things will fail.... Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards). In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed. h3. Where to go from here? We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only. h3. Building from Source Elasticsearch uses "Gradle":https://gradle.org for its build system. In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory. The distribution for each project will be created under the @build/distributions@ directory in that project. See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite. h3. Upgrading from older Elasticsearch versions In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.
Description
Languages
Java
99.5%
Groovy
0.4%