277 lines
5.6 KiB
Plaintext
277 lines
5.6 KiB
Plaintext
[[query-dsl-nested-query]]
|
|
=== Nested query
|
|
++++
|
|
<titleabbrev>Nested</titleabbrev>
|
|
++++
|
|
|
|
Wraps another query to search <<nested,nested>> fields.
|
|
|
|
The `nested` query searches nested field objects as if they were indexed as
|
|
separate documents. If an object matches the search, the `nested` query returns
|
|
the root parent document.
|
|
|
|
[[nested-query-ex-request]]
|
|
==== Example request
|
|
|
|
[[nested-query-index-setup]]
|
|
===== Index setup
|
|
|
|
To use the `nested` query, your index must include a <<nested,nested>> field
|
|
mapping. For example:
|
|
|
|
[source,console]
|
|
----
|
|
PUT /my-index-000001
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"obj1": {
|
|
"type": "nested"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
----
|
|
|
|
[[nested-query-ex-query]]
|
|
===== Example query
|
|
|
|
[source,console]
|
|
----
|
|
GET /my-index-000001/_search
|
|
{
|
|
"query": {
|
|
"nested": {
|
|
"path": "obj1",
|
|
"query": {
|
|
"bool": {
|
|
"must": [
|
|
{ "match": { "obj1.name": "blue" } },
|
|
{ "range": { "obj1.count": { "gt": 5 } } }
|
|
]
|
|
}
|
|
},
|
|
"score_mode": "avg"
|
|
}
|
|
}
|
|
}
|
|
----
|
|
// TEST[continued]
|
|
|
|
[[nested-top-level-params]]
|
|
==== Top-level parameters for `nested`
|
|
|
|
`path`::
|
|
(Required, string) Path to the nested object you wish to search.
|
|
|
|
`query`::
|
|
+
|
|
--
|
|
(Required, query object) Query you wish to run on nested objects in the `path`.
|
|
If an object matches the search, the `nested` query returns the root parent
|
|
document.
|
|
|
|
You can search nested fields using dot notation that includes the complete path,
|
|
such as `obj1.name`.
|
|
|
|
Multi-level nesting is automatically supported, and detected, resulting in an
|
|
inner nested query to automatically match the relevant nesting level, rather
|
|
than root, if it exists within another nested query.
|
|
|
|
See <<multi-level-nested-query-ex>> for an example.
|
|
--
|
|
|
|
`score_mode`::
|
|
+
|
|
--
|
|
(Optional, string) Indicates how scores for matching child objects affect the
|
|
root parent document's <<relevance-scores,relevance score>>. Valid values
|
|
are:
|
|
|
|
`avg` (Default)::
|
|
Use the mean relevance score of all matching child objects.
|
|
|
|
`max`::
|
|
Uses the highest relevance score of all matching child objects.
|
|
|
|
`min`::
|
|
Uses the lowest relevance score of all matching child objects.
|
|
|
|
`none`::
|
|
Do not use the relevance scores of matching child objects. The query assigns
|
|
parent documents a score of `0`.
|
|
|
|
`sum`::
|
|
Add together the relevance scores of all matching child objects.
|
|
--
|
|
|
|
`ignore_unmapped`::
|
|
+
|
|
--
|
|
(Optional, boolean) Indicates whether to ignore an unmapped `path` and not
|
|
return any documents instead of an error. Defaults to `false`.
|
|
|
|
If `false`, {es} returns an error if the `path` is an unmapped field.
|
|
|
|
You can use this parameter to query multiple indices that may not contain the
|
|
field `path`.
|
|
--
|
|
|
|
[[nested-query-notes]]
|
|
==== Notes
|
|
|
|
[[multi-level-nested-query-ex]]
|
|
===== Multi-level nested queries
|
|
|
|
To see how multi-level nested queries work,
|
|
first you need an index that has nested fields.
|
|
The following request defines mappings for the `drivers` index
|
|
with nested `make` and `model` fields.
|
|
|
|
[source,console]
|
|
----
|
|
PUT /drivers
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"driver": {
|
|
"type": "nested",
|
|
"properties": {
|
|
"last_name": {
|
|
"type": "text"
|
|
},
|
|
"vehicle": {
|
|
"type": "nested",
|
|
"properties": {
|
|
"make": {
|
|
"type": "text"
|
|
},
|
|
"model": {
|
|
"type": "text"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
|
|
Next, index some documents to the `drivers` index.
|
|
|
|
[source,console]
|
|
----
|
|
PUT /drivers/_doc/1
|
|
{
|
|
"driver" : {
|
|
"last_name" : "McQueen",
|
|
"vehicle" : [
|
|
{
|
|
"make" : "Powell Motors",
|
|
"model" : "Canyonero"
|
|
},
|
|
{
|
|
"make" : "Miller-Meteor",
|
|
"model" : "Ecto-1"
|
|
}
|
|
]
|
|
}
|
|
}
|
|
|
|
PUT /drivers/_doc/2?refresh
|
|
{
|
|
"driver" : {
|
|
"last_name" : "Hudson",
|
|
"vehicle" : [
|
|
{
|
|
"make" : "Mifune",
|
|
"model" : "Mach Five"
|
|
},
|
|
{
|
|
"make" : "Miller-Meteor",
|
|
"model" : "Ecto-1"
|
|
}
|
|
]
|
|
}
|
|
}
|
|
----
|
|
// TEST[continued]
|
|
|
|
You can now use a multi-level nested query
|
|
to match documents based on the `make` and `model` fields.
|
|
|
|
[source,console]
|
|
----
|
|
GET /drivers/_search
|
|
{
|
|
"query": {
|
|
"nested": {
|
|
"path": "driver",
|
|
"query": {
|
|
"nested": {
|
|
"path": "driver.vehicle",
|
|
"query": {
|
|
"bool": {
|
|
"must": [
|
|
{ "match": { "driver.vehicle.make": "Powell Motors" } },
|
|
{ "match": { "driver.vehicle.model": "Canyonero" } }
|
|
]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----
|
|
// TEST[continued]
|
|
|
|
The search request returns the following response:
|
|
|
|
[source,console-result]
|
|
----
|
|
{
|
|
"took" : 5,
|
|
"timed_out" : false,
|
|
"_shards" : {
|
|
"total" : 1,
|
|
"successful" : 1,
|
|
"skipped" : 0,
|
|
"failed" : 0
|
|
},
|
|
"hits" : {
|
|
"total" : {
|
|
"value" : 1,
|
|
"relation" : "eq"
|
|
},
|
|
"max_score" : 3.7349272,
|
|
"hits" : [
|
|
{
|
|
"_index" : "drivers",
|
|
"_type" : "_doc",
|
|
"_id" : "1",
|
|
"_score" : 3.7349272,
|
|
"_source" : {
|
|
"driver" : {
|
|
"last_name" : "McQueen",
|
|
"vehicle" : [
|
|
{
|
|
"make" : "Powell Motors",
|
|
"model" : "Canyonero"
|
|
},
|
|
{
|
|
"make" : "Miller-Meteor",
|
|
"model" : "Ecto-1"
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
----
|
|
// TESTRESPONSE[s/"took" : 5/"took": $body.took/]
|