🔎 Open source distributed and RESTful search engine.
Go to file
Nik Everett 2c0f67318a
Docs: Reenable rollup docs tests (#34564)
We'd disabled them because we didn't have a way to clean up after each
test. I implemented #34342 which adds the clean ups so now we can
re-enable the tests.

In the `setup` sections we have to use `raw` requests instead of
`x-pack` requests because we don't have the json config for x-pack.

Closes #33319
2018-10-18 15:24:02 -04:00
.ci Switch to parametric CI jobs (#34179) 2018-10-17 07:57:30 +03:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Use RUNTIME_JAVA_HOME for micro benchmarks (#34353) 2018-10-08 15:39:00 +02:00
buildSrc Amazon: Wrap at 140 columns (#34495) 2018-10-18 09:09:09 -04:00
client Remove deprecated setting from test 2018-10-18 10:17:25 +03:00
dev-tools Improve release notes script (#31833) 2018-07-09 15:32:10 -04:00
distribution Test: Fix running with external cluster 2018-10-15 15:13:20 -04:00
docs Docs: Reenable rollup docs tests (#34564) 2018-10-18 15:24:02 -04:00
gradle/wrapper Upgrade to latest Gradle 4.10 (#32801) 2018-08-30 10:20:38 +03:00
libs Remove lenient boolean handling 2018-10-16 06:30:00 +02:00
licenses Reorganize license files 2018-04-20 15:33:59 -07:00
modules Ensure map keys cannot be self referencing (#34569) 2018-10-17 15:16:13 -07:00
plugins Fixing line lengths in murmur3 and hdfs plugins (#34603) 2018-10-18 09:57:20 -05:00
qa TEST: Fix indentation in FullClusterRestartIT (#34420) 2018-10-12 15:11:55 -04:00
rest-api-spec HLRC: Add throttling for update & delete-by-query (#33951) 2018-10-02 21:44:15 +02:00
server [Tests] Correct map lookup in ReplicationTrackerTests (#34565) 2018-10-18 11:23:53 +02:00
test TEST: Capture replication targets when replication group ready (#34407) 2018-10-17 17:37:52 -04:00
x-pack [Rollup] Add support for date histo `format` (#34537) 2018-10-18 12:12:17 -04:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.editorconfig Add simple EditorConfig 2015-11-30 14:47:03 +01:00
.gitattributes Add a CHANGELOG file for release notes. (#29450) 2018-04-18 07:42:05 -07:00
.gitignore Cleanup .gitignore (#30145) 2018-04-25 22:11:40 -04:00
CONTRIBUTING.md Docs: Remove unnecessary qualifier from wildcard import note (#34419) 2018-10-14 21:32:36 +01:00
LICENSE.txt Reorganize license files 2018-04-20 15:33:59 -07:00
NOTICE.txt [Docs] Update Copyright notices to 2018 (#29404) 2018-04-06 16:21:20 +02:00
README.textile Docs: Fix README upgrade mention (#32313) 2018-07-31 16:14:37 +02:00
TESTING.asciidoc Update TESTING.asciidoc title (#34401) 2018-10-15 06:54:18 +01:00
Vagrantfile Add Ubuntu 18.04 to packaging tests (#34139) 2018-09-28 17:33:29 -04:00
build.gradle Add script to cache dependencies (#33726) 2018-09-14 16:14:03 -04:00
gradle.properties Build: forked compiler max memory matches jvmArgs (#33138) 2018-08-27 10:26:25 -06:00
gradlew Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 2018-05-01 16:46:58 -07:00
gradlew.bat Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 2018-05-01 16:46:58 -07:00
settings.gradle Build: Line up IDE detection logic 2018-08-24 16:11:07 -04:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/3?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @post_date@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "index" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.