293 lines
8.5 KiB
Plaintext
293 lines
8.5 KiB
Plaintext
[role="xpack"]
|
||
[testenv="platinum"]
|
||
[[put-dfanalytics]]
|
||
=== Create {dfanalytics-jobs} API
|
||
[subs="attributes"]
|
||
++++
|
||
<titleabbrev>Create {dfanalytics-jobs}</titleabbrev>
|
||
++++
|
||
|
||
Instantiates a {dfanalytics-job}.
|
||
|
||
experimental[]
|
||
|
||
[[ml-put-dfanalytics-request]]
|
||
==== {api-request-title}
|
||
|
||
`PUT _ml/data_frame/analytics/<data_frame_analytics_id>`
|
||
|
||
|
||
[[ml-put-dfanalytics-prereq]]
|
||
==== {api-prereq-title}
|
||
|
||
* You must have `machine_learning_admin` built-in role to use this API. You must
|
||
also have `read` and `view_index_metadata` privileges on the source index and
|
||
`read`, `create_index`, and `index` privileges on the destination index. For
|
||
more information, see <<security-privileges>> and <<built-in-roles>>.
|
||
|
||
|
||
[[ml-put-dfanalytics-desc]]
|
||
==== {api-description-title}
|
||
|
||
This API creates a {dfanalytics-job} that performs an analysis on the source
|
||
index and stores the outcome in a destination index.
|
||
|
||
The destination index will be automatically created if it does not exist. The
|
||
`index.number_of_shards` and `index.number_of_replicas` settings of the source
|
||
index will be copied over the destination index. When the source index matches
|
||
multiple indices, these settings will be set to the maximum values found in the
|
||
source indices.
|
||
|
||
The mappings of the source indices are also attempted to be copied over
|
||
to the destination index, however, if the mappings of any of the fields don't
|
||
match among the source indices, the attempt will fail with an error message.
|
||
|
||
If the destination index already exists, then it will be use as is. This makes
|
||
it possible to set up the destination index in advance with custom settings
|
||
and mappings.
|
||
|
||
[[ml-put-dfanalytics-supported-fields]]
|
||
===== Supported fields
|
||
|
||
====== {oldetection-cap}
|
||
|
||
{oldetection-cap} requires numeric or boolean data to analyze. The algorithms
|
||
don't support missing values therefore fields that have data types other than
|
||
numeric or boolean are ignored. Documents where included fields contain missing
|
||
values, null values, or an array are also ignored. Therefore the `dest` index
|
||
may contain documents that don't have an {olscore}.
|
||
|
||
|
||
====== {regression-cap}
|
||
|
||
{regression-cap} supports fields that are numeric, boolean, text, keyword and ip. It
|
||
is also tolerant of missing values. Fields that are supported are included in
|
||
the analysis, other fields are ignored. Documents where included fields contain
|
||
an array with two or more values are also ignored. Documents in the `dest` index
|
||
that don’t contain a results field are not included in the {reganalysis}.
|
||
|
||
|
||
[[ml-put-dfanalytics-path-params]]
|
||
==== {api-path-parms-title}
|
||
|
||
`<data_frame_analytics_id>`::
|
||
(Required, string) A numerical character string that uniquely identifies the
|
||
{dfanalytics-job}. This identifier can contain lowercase alphanumeric
|
||
characters (a-z and 0-9), hyphens, and underscores. It must start and end with
|
||
alphanumeric characters.
|
||
|
||
|
||
[[ml-put-dfanalytics-request-body]]
|
||
==== {api-request-body-title}
|
||
|
||
`analysis`::
|
||
(Required, object) Defines the type of {dfanalytics} you want to perform on
|
||
your source index. For example: `outlier_detection`. See
|
||
<<dfanalytics-types>>.
|
||
|
||
`analyzed_fields`::
|
||
(Optional, object) You can specify both `includes` and/or `excludes` patterns.
|
||
If `analyzed_fields` is not set, only the relevant fields will be included.
|
||
For example, all the numeric fields for {oldetection}. For the supported field
|
||
types, see <<ml-put-dfanalytics-supported-fields>>.
|
||
|
||
`includes`:::
|
||
(Optional, array) An array of strings that defines the fields that will be
|
||
included in the analysis.
|
||
|
||
`excludes`:::
|
||
(Optional, array) An array of strings that defines the fields that will be
|
||
excluded from the analysis.
|
||
|
||
`description`::
|
||
(Optional, string) A description of the job.
|
||
|
||
`dest`::
|
||
(Required, object) The destination configuration, consisting of `index` and
|
||
optionally `results_field` (`ml` by default).
|
||
|
||
`index`:::
|
||
(Required, string) Defines the _destination index_ to store the results of
|
||
the {dfanalytics-job}.
|
||
|
||
`results_field`:::
|
||
(Optional, string) Defines the name of the field in which to store the
|
||
results of the analysis. Default to `ml`.
|
||
|
||
`model_memory_limit`::
|
||
(Optional, string) The approximate maximum amount of memory resources that are
|
||
permitted for analytical processing. The default value for {dfanalytics-jobs}
|
||
is `1gb`. If your `elasticsearch.yml` file contains an
|
||
`xpack.ml.max_model_memory_limit` setting, an error occurs when you try to
|
||
create {dfanalytics-jobs} that have `model_memory_limit` values greater than
|
||
that setting. For more information, see <<ml-settings>>.
|
||
|
||
`source`::
|
||
(Required, object) The source configuration, consisting of `index` and
|
||
optionally a `query`.
|
||
|
||
`index`:::
|
||
(Required, string or array) Index or indices on which to perform the
|
||
analysis. It can be a single index or index pattern as well as an array of
|
||
indices or patterns.
|
||
|
||
`query`:::
|
||
(Optional, object) The {es} query domain-specific language
|
||
(<<query-dsl,DSL>>). This value corresponds to the query object in an {es}
|
||
search POST body. All the options that are supported by {es} can be used,
|
||
as this object is passed verbatim to {es}. By default, this property has
|
||
the following value: `{"match_all": {}}`.
|
||
|
||
|
||
[[ml-put-dfanalytics-example]]
|
||
==== {api-examples-title}
|
||
|
||
[[ml-put-dfanalytics-example-od]]
|
||
===== {oldetection-cap} example
|
||
|
||
The following example creates the `loganalytics` {dfanalytics-job}, the analysis
|
||
type is `outlier_detection`:
|
||
|
||
[source,console]
|
||
--------------------------------------------------
|
||
PUT _ml/data_frame/analytics/loganalytics
|
||
{
|
||
"description": "Outlier detection on log data",
|
||
"source": {
|
||
"index": "logdata"
|
||
},
|
||
"dest": {
|
||
"index": "logdata_out"
|
||
},
|
||
"analysis": {
|
||
"outlier_detection": {
|
||
"compute_feature_influence": true,
|
||
"outlier_fraction": 0.05,
|
||
"standardization_enabled": true
|
||
}
|
||
}
|
||
}
|
||
--------------------------------------------------
|
||
// TEST[setup:setup_logdata]
|
||
|
||
|
||
The API returns the following result:
|
||
|
||
[source,console-result]
|
||
----
|
||
{
|
||
"id" : "loganalytics",
|
||
"description": "Outlier detection on log data",
|
||
"source" : {
|
||
"index" : [
|
||
"logdata"
|
||
],
|
||
"query" : {
|
||
"match_all" : { }
|
||
}
|
||
},
|
||
"dest" : {
|
||
"index" : "logdata_out",
|
||
"results_field" : "ml"
|
||
},
|
||
"analysis": {
|
||
"outlier_detection": {
|
||
"compute_feature_influence": true,
|
||
"outlier_fraction": 0.05,
|
||
"standardization_enabled": true
|
||
}
|
||
},
|
||
"model_memory_limit" : "1gb",
|
||
"create_time" : 1562351429434,
|
||
"version" : "7.3.0"
|
||
}
|
||
----
|
||
// TESTRESPONSE[s/1562351429434/$body.$_path/]
|
||
// TESTRESPONSE[s/"version" : "7.3.0"/"version" : $body.version/]
|
||
|
||
|
||
[[ml-put-dfanalytics-example-r]]
|
||
===== {regression-cap} examples
|
||
|
||
The following example creates the `house_price_regression_analysis`
|
||
{dfanalytics-job}, the analysis type is `regression`:
|
||
|
||
[source,console]
|
||
--------------------------------------------------
|
||
PUT _ml/data_frame/analytics/house_price_regression_analysis
|
||
{
|
||
"source": {
|
||
"index": "houses_sold_last_10_yrs"
|
||
},
|
||
"dest": {
|
||
"index": "house_price_predictions"
|
||
},
|
||
"analysis":
|
||
{
|
||
"regression": {
|
||
"dependent_variable": "price"
|
||
}
|
||
}
|
||
}
|
||
--------------------------------------------------
|
||
// TEST[skip:TBD]
|
||
|
||
|
||
The API returns the following result:
|
||
|
||
[source,console-result]
|
||
----
|
||
{
|
||
"id" : "house_price_regression_analysis",
|
||
"source" : {
|
||
"index" : [
|
||
"houses_sold_last_10_yrs"
|
||
],
|
||
"query" : {
|
||
"match_all" : { }
|
||
}
|
||
},
|
||
"dest" : {
|
||
"index" : "house_price_predictions",
|
||
"results_field" : "ml"
|
||
},
|
||
"analysis" : {
|
||
"regression" : {
|
||
"dependent_variable" : "price",
|
||
"training_percent" : 100
|
||
}
|
||
},
|
||
"model_memory_limit" : "1gb",
|
||
"create_time" : 1567168659127,
|
||
"version" : "8.0.0"
|
||
}
|
||
----
|
||
// TESTRESPONSE[s/1567168659127/$body.$_path/]
|
||
// TESTRESPONSE[s/"version": "8.0.0"/"version": $body.version/]
|
||
|
||
|
||
The following example creates a job and specifies a training percent:
|
||
|
||
[source,console]
|
||
--------------------------------------------------
|
||
PUT _ml/data_frame/analytics/student_performance_mathematics_0.3
|
||
{
|
||
"source": {
|
||
"index": "student_performance_mathematics"
|
||
},
|
||
"dest": {
|
||
"index":"student_performance_mathematics_reg"
|
||
},
|
||
"analysis":
|
||
{
|
||
"regression": {
|
||
"dependent_variable": "G3",
|
||
"training_percent": 70 <1>
|
||
}
|
||
}
|
||
}
|
||
--------------------------------------------------
|
||
// TEST[skip:TBD]
|
||
|
||
<1> The `training_percent` defines the percentage of the data set that will be used
|
||
for training the model. |