🔎 Open source distributed and RESTful search engine.
Go to file
Nhat Nguyen 33204c2055 Use peer recovery retention leases for indices without soft-deletes (#50351)
Today, the replica allocator uses peer recovery retention leases to
select the best-matched copies when allocating replicas of indices with
soft-deletes. We can employ this mechanism for indices without
soft-deletes because the retaining sequence number of a PRRL is the
persisted global checkpoint (plus one) of that copy. If the primary and
replica have the same retaining sequence number, then we should be able
to perform a noop recovery. The reason is that we must be retaining
translog up to the local checkpoint of the safe commit, which is at most
the global checkpoint of either copy). The only limitation is that we
might not cancel ongoing file-based recoveries with PRRLs for noop
recoveries. We can't make the translog retention policy comply with
PRRLs. We also have this problem with soft-deletes if a PRRL is about to
expire.

Relates #45136
Relates #46959
2019-12-23 22:04:07 -05:00
.ci Update BWC CI versions for 6.8.6 release 2019-12-20 15:47:23 -08:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Apply 2-space indent to all gradle scripts (#49071) 2019-11-14 11:01:23 +00:00
buildSrc Fix NPE when `./gradlew run` without `--data-dir` (#50421) (#50425) 2019-12-20 12:25:58 -08:00
client [7.x] Add ILM histore store index (#50287) (#50345) 2019-12-20 12:33:36 -07:00
dev-tools Add shell script for performing atomic pushes across branches (#50401) 2019-12-19 12:55:36 -08:00
distribution Handle renaming the README (#50404) (#50406) 2019-12-19 18:55:38 -05:00
docs [DOCS] Fixes "enables you to" typos (#50225) 2019-12-23 14:39:14 -05:00
gradle Upgrade to Gradle 6.0 (#49211) (#49994) 2019-12-09 11:34:35 -08:00
libs Geo: Switch generated WKT to upper case (#50285) 2019-12-18 17:29:08 -05:00
licenses Reorganize license files 2018-04-20 15:33:59 -07:00
modules Log deprecation for nGram and edgeNGram custom filters (#50376) (#50445) 2019-12-20 22:00:08 +01:00
plugins Remove accidentally added license files (#50370) 2019-12-20 13:53:55 +01:00
qa Use peer recovery retention leases for indices without soft-deletes (#50351) 2019-12-23 22:04:07 -05:00
rest-api-spec cat.indices.json bytes enum not exhaustive (#49369) 2019-12-12 13:14:13 +01:00
server Use peer recovery retention leases for indices without soft-deletes (#50351) 2019-12-23 22:04:07 -05:00
test Use peer recovery retention leases for indices without soft-deletes (#50351) 2019-12-23 22:04:07 -05:00
x-pack [DOCS] Fixes "enables you to" typos (#50225) 2019-12-23 14:39:14 -05:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.eclipseformat.xml Enable spotless for enrich gradle project in 7 dot x branch. (#48976) 2019-11-12 13:22:34 +01:00
.editorconfig Remove default indent from .editorconfig (#49183) 2019-11-18 08:05:53 +00:00
.gitattributes Add a CHANGELOG file for release notes. (#29450) 2018-04-18 07:42:05 -07:00
.gitignore Move periodic job to ES repo (#48570) 2019-11-13 17:12:42 +02:00
CONTRIBUTING.md Require JDK 13 for compilation (#50004) 2019-12-11 16:29:15 -05:00
LICENSE.txt Clarify mixed license text (#45637) 2019-08-16 13:39:12 -04:00
NOTICE.txt Restore date aggregation performance in UTC case (#38221) (#38700) 2019-02-11 16:30:48 +03:00
README.asciidoc [DOCS] Convert main README to asciidoc (#50303) (#50384) 2019-12-19 12:58:22 -05:00
TESTING.asciidoc Detail the IDEs options for configuring the debug step (#48507) 2019-10-25 17:27:48 +03:00
Vagrantfile Add Docker packaging tests on 7.x (#48857) 2019-11-05 15:17:59 +00:00
build.gradle Add --data-dir option to run task (#50342) 2019-12-19 12:48:24 -08:00
gradle.properties Testclusters: improove timeout handling (#43440) 2019-07-01 11:39:53 +03:00
gradlew Upgrade to Gradle 6.0 (#49211) (#49994) 2019-12-09 11:34:35 -08:00
gradlew.bat Upgrade to Gradle 5.5 (#43788) (#43832) 2019-07-01 11:54:58 -07:00
settings.gradle Upgrade to Gradle Enterprise plugin 3.1.1 (#50451) 2019-12-20 15:01:39 -08:00

README.asciidoc

= Elasticsearch

== A Distributed RESTful Search Engine

=== https://www.elastic.co/products/elasticsearch[https://www.elastic.co/products/elasticsearch]

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Apache Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

== Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

=== Installation

* https://www.elastic.co/downloads/elasticsearch[Download] and unpack the Elasticsearch official distribution.
* Run `bin/elasticsearch` on Linux or macOS. Run `bin\elasticsearch.bat` on Windows.
* Run `curl -X GET http://localhost:9200/`.
* Start more servers ...

=== Indexing

Let's try and index some twitter like information. First, let's index some tweets (the `twitter` index will be created automatically):

----
curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
----

Now, let's see if the information was added by GETting it:

----
curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true'
----

=== Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that `kimchy` posted:

----
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
----

We can also use the JSON query language Elasticsearch provides instead of a query string:

----
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
----

Just for kicks, let's get all the documents stored (we should see the tweet from `elastic` as well):

----
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
----

We can also do range search (the `post_date` was automatically identified as date)

----
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
----

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

=== Multi Tenant - Indices

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called `twitter` that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

----
curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
----

The above will index information into the `kimchy` index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we might want to change from the default 1 shards with 1 replica per index, to 2 shards with 1 replica per index (because this user tweets a lot). Here is how this can be done (the configuration can be in yaml as well):

----
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "settings" : {
        "index.number_of_shards" : 2,
        "index.number_of_replicas" : 1
    }
}'
----

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

----
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
----

Or on all the indices:

----
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
----

And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

=== Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 1 shard and 1 replica per shard (1/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

=== Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the http://www.elastic.co/products/elasticsearch[elastic.co] website. General questions can be asked on the https://discuss.elastic.co[Elastic Forum] or https://ela.st/slack[on Slack]. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

=== Building from Source

Elasticsearch uses https://gradle.org[Gradle] for its build system.

In order to create a distribution, simply run the `./gradlew assemble` command in the cloned directory.

The distribution for each project will be created under the `build/distributions` directory in that project.

See the xref:TESTING.asciidoc[TESTING] for more information about running the Elasticsearch test suite.

=== Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html[upgrade documentation] for more details on the upgrade process.