OpenSearch/docs/painless/painless-lang-spec/painless-operators-numeric....

1339 lines
32 KiB
Plaintext

[[painless-operators-numeric]]
=== Operators: Numeric
[[post-increment-operator]]
==== Post Increment
Use the `post increment operator '++'` to INCREASE the value of a numeric type
variable/field by `1`. An extra implicit cast is necessary to return the
promoted numeric type value to the original numeric type value of the
variable/field for the following types: `byte`, `short`, and `char`. If a
variable/field is read as part of an expression the value is loaded prior to the
increment.
*Errors*
* If the variable/field is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
post_increment: ( variable | field ) '++';
----
*Promotion*
[options="header",cols="<1,<1,<1"]
|====
| original | promoted | implicit
| byte | int | byte
| short | int | short
| char | int | char
| int | int |
| long | long |
| float | float |
| double | double |
| def | def |
|====
*Examples*
* Post increment with different numeric types.
+
[source,Painless]
----
short i = 0; <1>
i++; <2>
long j = 1; <3>
long k; <4>
k = j++; <5>
----
+
<1> declare `short i`;
store `short 0` to `i`
<2> load from `i` -> `short 0`;
promote `short 0`: result `int`;
add `int 0` and `int 1` -> `int 1`;
implicit cast `int 1` to `short 1`;
store `short 1` to `i`
<3> declare `long j`;
implicit cast `int 1` to `long 1` -> `long 1`;
store `long 1` to `j`
<4> declare `long k`;
store default `long 0` to `k`
<5> load from `j` -> `long 1`;
store `long 1` to `k`;
add `long 1` and `long 1` -> `long 2`;
store `long 2` to `j`
+
* Post increment with the `def` type.
+
[source,Painless]
----
def x = 1; <1>
x++; <2>
----
+
<1> declare `def x`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `x`
<2> load from `x` -> `def`;
implicit cast `def` to `int 1`;
add `int 1` and `int 1` -> `int 2`;
implicit cast `int 2` to `def`;
store `def` to `x`
[[post-decrement-operator]]
==== Post Decrement
Use the `post decrement operator '--'` to DECREASE the value of a numeric type
variable/field by `1`. An extra implicit cast is necessary to return the
promoted numeric type value to the original numeric type value of the
variable/field for the following types: `byte`, `short`, and `char`. If a
variable/field is read as part of an expression the value is loaded prior to
the decrement.
*Errors*
* If the variable/field is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
post_decrement: ( variable | field ) '--';
----
*Promotion*
[options="header",cols="<1,<1,<1"]
|====
| original | promoted | implicit
| byte | int | byte
| short | int | short
| char | int | char
| int | int |
| long | long |
| float | float |
| double | double |
| def | def |
|====
*Examples*
* Post decrement with different numeric types.
+
[source,Painless]
----
short i = 0; <1>
i--; <2>
long j = 1; <3>
long k; <4>
k = j--; <5>
----
+
<1> declare `short i`;
store `short 0` to `i`
<2> load from `i` -> `short 0`;
promote `short 0`: result `int`;
subtract `int 1` from `int 0` -> `int -1`;
implicit cast `int -1` to `short -1`;
store `short -1` to `i`
<3> declare `long j`;
implicit cast `int 1` to `long 1` -> `long 1`;
store `long 1` to `j`
<4> declare `long k`;
store default `long 0` to `k`
<5> load from `j` -> `long 1`;
store `long 1` to `k`;
subtract `long 1` from `long 1` -> `long 0`;
store `long 0` to `j`
+
* Post decrement with the `def` type.
+
[source,Painless]
----
def x = 1; <1>
x--; <2>
----
+
<1> declare `def x`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `x`
<2> load from `x` -> `def`;
implicit cast `def` to `int 1`;
subtract `int 1` from `int 1` -> `int 0`;
implicit cast `int 0` to `def`;
store `def` to `x`
[[pre-increment-operator]]
==== Pre Increment
Use the `pre increment operator '++'` to INCREASE the value of a numeric type
variable/field by `1`. An extra implicit cast is necessary to return the
promoted numeric type value to the original numeric type value of the
variable/field for the following types: `byte`, `short`, and `char`. If a
variable/field is read as part of an expression the value is loaded after the
increment.
*Errors*
* If the variable/field is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
pre_increment: '++' ( variable | field );
----
*Promotion*
[options="header",cols="<1,<1,<1"]
|====
| original | promoted | implicit
| byte | int | byte
| short | int | short
| char | int | char
| int | int |
| long | long |
| float | float |
| double | double |
| def | def |
|====
*Examples*
* Pre increment with different numeric types.
+
[source,Painless]
----
short i = 0; <1>
++i; <2>
long j = 1; <3>
long k; <4>
k = ++j; <5>
----
+
<1> declare `short i`;
store `short 0` to `i`
<2> load from `i` -> `short 0`;
promote `short 0`: result `int`;
add `int 0` and `int 1` -> `int 1`;
implicit cast `int 1` to `short 1`;
store `short 1` to `i`
<3> declare `long j`;
implicit cast `int 1` to `long 1` -> `long 1`;
store `long 1` to `j`
<4> declare `long k`;
store default `long 0` to `k`
<5> load from `j` -> `long 1`;
add `long 1` and `long 1` -> `long 2`;
store `long 2` to `j`;
store `long 2` to `k`
+
* Pre increment with the `def` type.
+
[source,Painless]
----
def x = 1; <1>
++x; <2>
----
+
<1> declare `def x`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `x`
<2> load from `x` -> `def`;
implicit cast `def` to `int 1`;
add `int 1` and `int 1` -> `int 2`;
implicit cast `int 2` to `def`;
store `def` to `x`
[[pre-decrement-operator]]
==== Pre Decrement
Use the `pre decrement operator '--'` to DECREASE the value of a numeric type
variable/field by `1`. An extra implicit cast is necessary to return the
promoted numeric type value to the original numeric type value of the
variable/field for the following types: `byte`, `short`, and `char`. If a
variable/field is read as part of an expression the value is loaded after the
decrement.
*Errors*
* If the variable/field is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
pre_increment: '--' ( variable | field );
----
*Promotion*
[options="header",cols="<1,<1,<1"]
|====
| original | promoted | implicit
| byte | int | byte
| short | int | short
| char | int | char
| int | int |
| long | long |
| float | float |
| double | double |
| def | def |
|====
*Examples*
* Pre decrement with different numeric types.
+
[source,Painless]
----
short i = 0; <1>
--i; <2>
long j = 1; <3>
long k; <4>
k = --j; <5>
----
+
<1> declare `short i`;
store `short 0` to `i`
<2> load from `i` -> `short 0`;
promote `short 0`: result `int`;
subtract `int 1` from `int 0` -> `int -1`;
implicit cast `int -1` to `short -1`;
store `short -1` to `i`
<3> declare `long j`;
implicit cast `int 1` to `long 1` -> `long 1`;
store `long 1` to `j`
<4> declare `long k`;
store default `long 0` to `k`
<5> load from `j` -> `long 1`;
subtract `long 1` from `long 1` -> `long 0`;
store `long 0` to `j`
store `long 0` to `k`;
+
* Pre decrement operator with the `def` type.
+
[source,Painless]
----
def x = 1; <1>
--x; <2>
----
+
<1> declare `def x`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `x`
<2> load from `x` -> `def`;
implicit cast `def` to `int 1`;
subtract `int 1` from `int 1` -> `int 0`;
implicit cast `int 0` to `def`;
store `def` to `x`
[[unary-positive-operator]]
==== Unary Positive
Use the `unary positive operator '+'` to the preserve the IDENTITY of a
numeric type value.
*Errors*
* If the value is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
unary_positive: '+' expression;
----
*Examples*
* Unary positive with different numeric types.
+
[source,Painless]
----
int x = +1; <1>
long y = +x; <2>
----
+
<1> declare `int x`;
identity `int 1` -> `int 1`;
store `int 1` to `x`
<2> declare `long y`;
load from `x` -> `int 1`;
identity `int 1` -> `int 1`;
implicit cast `int 1` to `long 1` -> `long 1`;
store `long 1` to `y`
+
* Unary positive with the `def` type.
+
[source,Painless]
----
def z = +1; <1>
int i = +z; <2>
----
<1> declare `def z`;
identity `int 1` -> `int 1`;
implicit cast `int 1` to `def`;
store `def` to `z`
<2> declare `int i`;
load from `z` -> `def`;
implicit cast `def` to `int 1`;
identity `int 1` -> `int 1`;
store `int 1` to `i`;
[[unary-negative-operator]]
==== Unary Negative
Use the `unary negative operator '-'` to NEGATE a numeric type value.
*Errors*
* If the value is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
unary_negative: '-' expression;
----
*Examples*
* Unary negative with different numeric types.
+
[source,Painless]
----
int x = -1; <1>
long y = -x; <2>
----
+
<1> declare `int x`;
negate `int 1` -> `int -1`;
store `int -1` to `x`
<2> declare `long y`;
load from `x` -> `int 1`;
negate `int -1` -> `int 1`;
implicit cast `int 1` to `long 1` -> `long 1`;
store `long 1` to `y`
+
* Unary negative with the `def` type.
+
[source,Painless]
----
def z = -1; <1>
int i = -z; <2>
----
<1> declare `def z`;
negate `int 1` -> `int -1`;
implicit cast `int -1` to `def`;
store `def` to `z`
<2> declare `int i`;
load from `z` -> `def`;
implicit cast `def` to `int -1`;
negate `int -1` -> `int 1`;
store `int 1` to `i`;
[[bitwise-not-operator]]
==== Bitwise Not
Use the `bitwise not operator '~'` to NOT each bit in an integer type value
where a `1-bit` is flipped to a resultant `0-bit` and a `0-bit` is flipped to a
resultant `1-bit`.
*Errors*
* If the value is a non-integer type.
*Bits*
[options="header",cols="<1,<1"]
|====
| original | result
| 1 | 0
| 0 | 1
|====
*Grammar*
[source,ANTLR4]
----
bitwise_not: '~' expression;
----
*Promotion*
[options="header",cols="<1,<1"]
|====
| original | promoted
| byte | int
| short | int
| char | int
| int | int
| long | long
| def | def
|====
*Examples*
* Bitwise not with different numeric types.
+
[source,Painless]
----
byte b = 1; <1>
int i = ~b; <2>
long l = ~i; <3>
----
+
<1> declare `byte x`;
store `byte 1` to b
<2> declare `int i`;
load from `b` -> `byte 1`;
implicit cast `byte 1` to `int 1` -> `int 1`;
bitwise not `int 1` -> `int -2`;
store `int -2` to `i`
<3> declare `long l`;
load from `i` -> `int -2`;
implicit cast `int -2` to `long -2` -> `long -2`;
bitwise not `long -2` -> `long 1`;
store `long 1` to `l`
+
* Bitwise not with the `def` type.
+
[source,Painless]
----
def d = 1; <1>
def e = ~d; <2>
----
+
<1> declare `def d`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `d`;
<2> declare `def e`;
load from `d` -> `def`;
implicit cast `def` to `int 1` -> `int 1`;
bitwise not `int 1` -> `int -2`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `e`
[[multiplication-operator]]
==== Multiplication
Use the `multiplication operator '*'` to MULTIPLY together two numeric type
values. Rules for resultant overflow and NaN values follow the JVM
specification.
*Errors*
* If either of the values is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
multiplication: expression '*' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | float | double | def
| byte | int | int | int | int | long | float | double | def
| short | int | int | int | int | long | float | double | def
| char | int | int | int | int | long | float | double | def
| int | int | int | int | int | long | float | double | def
| long | long | long | long | long | long | float | double | def
| float | float | float | float | float | float | float | double | def
| double | double | double | double | double | double | double | double | def
| def | def | def | def | def | def | def | def | def
|====
*Examples*
* Multiplication with different numeric types.
+
[source,Painless]
----
int i = 5*4; <1>
double d = i*7.0; <2>
----
+
<1> declare `int i`;
multiply `int 4` by `int 5` -> `int 20`;
store `int 20` in `i`
<2> declare `double d`;
load from `int i` -> `int 20`;
promote `int 20` and `double 7.0`: result `double`;
implicit cast `int 20` to `double 20.0` -> `double 20.0`;
multiply `double 20.0` by `double 7.0` -> `double 140.0`;
store `double 140.0` to `d`
+
* Multiplication with the `def` type.
+
[source,Painless]
----
def x = 5*4; <1>
def y = x*2; <2>
----
<1> declare `def x`;
multiply `int 5` by `int 4` -> `int 20`;
implicit cast `int 20` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 20`;
multiply `int 20` by `int 2` -> `int 40`;
implicit cast `int 40` to `def` -> `def`;
store `def` to `y`
[[division-operator]]
==== Division
Use the `division operator '/'` to DIVIDE one numeric type value by another.
Rules for NaN values and division by zero follow the JVM specification. Division
with integer values drops the remainder of the resultant value.
*Errors*
* If either of the values is a non-numeric type.
* If a left-hand side integer type value is divided by a right-hand side integer
type value of `0`.
*Grammar*
[source,ANTLR4]
----
division: expression '/' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | float | double | def
| byte | int | int | int | int | long | float | double | def
| short | int | int | int | int | long | float | double | def
| char | int | int | int | int | long | float | double | def
| int | int | int | int | int | long | float | double | def
| long | long | long | long | long | long | float | double | def
| float | float | float | float | float | float | float | double | def
| double | double | double | double | double | double | double | double | def
| def | def | def | def | def | def | def | def | def
|====
*Examples*
* Division with different numeric types.
+
[source,Painless]
----
int i = 29/4; <1>
double d = i/7.0; <2>
----
+
<1> declare `int i`;
divide `int 29` by `int 4` -> `int 7`;
store `int 7` in `i`
<2> declare `double d`;
load from `int i` -> `int 7`;
promote `int 7` and `double 7.0`: result `double`;
implicit cast `int 7` to `double 7.0` -> `double 7.0`;
divide `double 7.0` by `double 7.0` -> `double 1.0`;
store `double 1.0` to `d`
+
* Division with the `def` type.
+
[source,Painless]
----
def x = 5/4; <1>
def y = x/2; <2>
----
<1> declare `def x`;
divide `int 5` by `int 4` -> `int 1`;
implicit cast `int 1` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 1`;
divide `int 1` by `int 2` -> `int 0`;
implicit cast `int 0` to `def` -> `def`;
store `def` to `y`
[[remainder-operator]]
==== Remainder
Use the `remainder operator '%'` to calculate the REMAINDER for division
between two numeric type values. Rules for NaN values and division by zero follow the JVM
specification.
*Errors*
* If either of the values is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
remainder: expression '%' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | float | double | def
| byte | int | int | int | int | long | float | double | def
| short | int | int | int | int | long | float | double | def
| char | int | int | int | int | long | float | double | def
| int | int | int | int | int | long | float | double | def
| long | long | long | long | long | long | float | double | def
| float | float | float | float | float | float | float | double | def
| double | double | double | double | double | double | double | double | def
| def | def | def | def | def | def | def | def | def
|====
*Examples*
* Remainder with different numeric types.
+
[source,Painless]
----
int i = 29%4; <1>
double d = i%7.0; <2>
----
+
<1> declare `int i`;
remainder `int 29` by `int 4` -> `int 1`;
store `int 7` in `i`
<2> declare `double d`;
load from `int i` -> `int 1`;
promote `int 1` and `double 7.0`: result `double`;
implicit cast `int 1` to `double 1.0` -> `double 1.0`;
remainder `double 1.0` by `double 7.0` -> `double 1.0`;
store `double 1.0` to `d`
+
* Remainder with the `def` type.
+
[source,Painless]
----
def x = 5%4; <1>
def y = x%2; <2>
----
<1> declare `def x`;
remainder `int 5` by `int 4` -> `int 1`;
implicit cast `int 1` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 1`;
remainder `int 1` by `int 2` -> `int 1`;
implicit cast `int 1` to `def` -> `def`;
store `def` to `y`
[[addition-operator]]
==== Addition
Use the `addition operator '+'` to ADD together two numeric type values. Rules
for resultant overflow and NaN values follow the JVM specification.
*Errors*
* If either of the values is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
addition: expression '+' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | float | double | def
| byte | int | int | int | int | long | float | double | def
| short | int | int | int | int | long | float | double | def
| char | int | int | int | int | long | float | double | def
| int | int | int | int | int | long | float | double | def
| long | long | long | long | long | long | float | double | def
| float | float | float | float | float | float | float | double | def
| double | double | double | double | double | double | double | double | def
| def | def | def | def | def | def | def | def | def
|====
*Examples*
* Addition operator with different numeric types.
+
[source,Painless]
----
int i = 29+4; <1>
double d = i+7.0; <2>
----
+
<1> declare `int i`;
add `int 29` and `int 4` -> `int 33`;
store `int 33` in `i`
<2> declare `double d`;
load from `int i` -> `int 33`;
promote `int 33` and `double 7.0`: result `double`;
implicit cast `int 33` to `double 33.0` -> `double 33.0`;
add `double 33.0` and `double 7.0` -> `double 40.0`;
store `double 40.0` to `d`
+
* Addition with the `def` type.
+
[source,Painless]
----
def x = 5+4; <1>
def y = x+2; <2>
----
<1> declare `def x`;
add `int 5` and `int 4` -> `int 9`;
implicit cast `int 9` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 9`;
add `int 9` and `int 2` -> `int 11`;
implicit cast `int 11` to `def` -> `def`;
store `def` to `y`
[[subtraction-operator]]
==== Subtraction
Use the `subtraction operator '-'` to SUBTRACT a right-hand side numeric type
value from a left-hand side numeric type value. Rules for resultant overflow
and NaN values follow the JVM specification.
*Errors*
* If either of the values is a non-numeric type.
*Grammar*
[source,ANTLR4]
----
subtraction: expression '-' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | float | double | def
| byte | int | int | int | int | long | float | double | def
| short | int | int | int | int | long | float | double | def
| char | int | int | int | int | long | float | double | def
| int | int | int | int | int | long | float | double | def
| long | long | long | long | long | long | float | double | def
| float | float | float | float | float | float | float | double | def
| double | double | double | double | double | double | double | double | def
| def | def | def | def | def | def | def | def | def
|====
*Examples*
* Subtraction with different numeric types.
+
[source,Painless]
----
int i = 29-4; <1>
double d = i-7.5; <2>
----
+
<1> declare `int i`;
subtract `int 4` from `int 29` -> `int 25`;
store `int 25` in `i`
<2> declare `double d`
load from `int i` -> `int 25`;
promote `int 25` and `double 7.5`: result `double`;
implicit cast `int 25` to `double 25.0` -> `double 25.0`;
subtract `double 33.0` by `double 7.5` -> `double 25.5`;
store `double 25.5` to `d`
+
* Subtraction with the `def` type.
+
[source,Painless]
----
def x = 5-4; <1>
def y = x-2; <2>
----
<1> declare `def x`;
subtract `int 4` and `int 5` -> `int 1`;
implicit cast `int 1` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 1`;
subtract `int 2` from `int 1` -> `int -1`;
implicit cast `int -1` to `def` -> `def`;
store `def` to `y`
[[left-shift-operator]]
==== Left Shift
Use the `left shift operator '<<'` to SHIFT lower order bits to higher order
bits in a left-hand side integer type value by the distance specified in a
right-hand side integer type value.
*Errors*
* If either of the values is a non-integer type.
* If the right-hand side value cannot be cast to an int type.
*Grammar*
[source,ANTLR4]
----
left_shift: expression '<<' expression;
----
*Promotion*
The left-hand side integer type value is promoted as specified in the table
below. The right-hand side integer type value is always implicitly cast to an
`int` type value and truncated to the number of bits of the promoted type value.
[options="header",cols="<1,<1"]
|====
| original | promoted
| byte | int
| short | int
| char | int
| int | int
| long | long
| def | def
|====
*Examples*
* Left shift with different integer types.
+
[source,Painless]
----
int i = 4 << 1; <1>
long l = i << 2L; <2>
----
+
<1> declare `int i`;
left shift `int 4` by `int 1` -> `int 8`;
store `int 8` in `i`
<2> declare `long l`
load from `int i` -> `int 8`;
implicit cast `long 2` to `int 2` -> `int 2`;
left shift `int 8` by `int 2` -> `int 32`;
implicit cast `int 32` to `long 32` -> `long 32`;
store `long 32` to `l`
+
* Left shift with the `def` type.
+
[source,Painless]
----
def x = 4 << 2; <1>
def y = x << 1; <2>
----
<1> declare `def x`;
left shift `int 4` by `int 2` -> `int 16`;
implicit cast `int 16` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 16`;
left shift `int 16` by `int 1` -> `int 32`;
implicit cast `int 32` to `def` -> `def`;
store `def` to `y`
[[right-shift-operator]]
==== Right Shift
Use the `right shift operator '>>'` to SHIFT higher order bits to lower order
bits in a left-hand side integer type value by the distance specified in a
right-hand side integer type value. The highest order bit of the left-hand side
integer type value is preserved.
*Errors*
* If either of the values is a non-integer type.
* If the right-hand side value cannot be cast to an int type.
*Grammar*
[source,ANTLR4]
----
right_shift: expression '>>' expression;
----
*Promotion*
The left-hand side integer type value is promoted as specified in the table
below. The right-hand side integer type value is always implicitly cast to an
`int` type value and truncated to the number of bits of the promoted type value.
[options="header",cols="<1,<1"]
|====
| original | promoted
| byte | int
| short | int
| char | int
| int | int
| long | long
| def | def
|====
*Examples*
* Right shift with different integer types.
+
[source,Painless]
----
int i = 32 >> 1; <1>
long l = i >> 2L; <2>
----
+
<1> declare `int i`;
right shift `int 32` by `int 1` -> `int 16`;
store `int 16` in `i`
<2> declare `long l`
load from `int i` -> `int 16`;
implicit cast `long 2` to `int 2` -> `int 2`;
right shift `int 16` by `int 2` -> `int 4`;
implicit cast `int 4` to `long 4` -> `long 4`;
store `long 4` to `l`
+
* Right shift with the `def` type.
+
[source,Painless]
----
def x = 16 >> 2; <1>
def y = x >> 1; <2>
----
<1> declare `def x`;
right shift `int 16` by `int 2` -> `int 4`;
implicit cast `int 4` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 4`;
right shift `int 4` by `int 1` -> `int 2`;
implicit cast `int 2` to `def` -> `def`;
store `def` to `y`
[[unsigned-right-shift-operator]]
==== Unsigned Right Shift
Use the `unsigned right shift operator '>>>'` to SHIFT higher order bits to
lower order bits in a left-hand side integer type value by the distance
specified in a right-hand side type integer value. The highest order bit of the
left-hand side integer type value is *not* preserved.
*Errors*
* If either of the values is a non-integer type.
* If the right-hand side value cannot be cast to an int type.
*Grammar*
[source,ANTLR4]
----
unsigned_right_shift: expression '>>>' expression;
----
*Promotion*
The left-hand side integer type value is promoted as specified in the table
below. The right-hand side integer type value is always implicitly cast to an
`int` type value and truncated to the number of bits of the promoted type value.
[options="header",cols="<1,<1"]
|====
| original | promoted
| byte | int
| short | int
| char | int
| int | int
| long | long
| def | def
|====
*Examples*
* Unsigned right shift with different integer types.
+
[source,Painless]
----
int i = -1 >>> 29; <1>
long l = i >>> 2L; <2>
----
+
<1> declare `int i`;
unsigned right shift `int -1` by `int 29` -> `int 7`;
store `int 7` in `i`
<2> declare `long l`
load from `int i` -> `int 7`;
implicit cast `long 2` to `int 2` -> `int 2`;
unsigned right shift `int 7` by `int 2` -> `int 3`;
implicit cast `int 3` to `long 3` -> `long 3`;
store `long 3` to `l`
+
* Unsigned right shift with the `def` type.
+
[source,Painless]
----
def x = 16 >>> 2; <1>
def y = x >>> 1; <2>
----
<1> declare `def x`;
unsigned right shift `int 16` by `int 2` -> `int 4`;
implicit cast `int 4` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 4`;
unsigned right shift `int 4` by `int 1` -> `int 2`;
implicit cast `int 2` to `def` -> `def`;
store `def` to `y`
[[bitwise-and-operator]]
==== Bitwise And
Use the `bitwise and operator '&'` to AND together each bit within two
integer type values where if both bits at the same index are `1` the resultant
bit is `1` and `0` otherwise.
*Errors*
* If either of the values is a non-integer type.
*Bits*
[cols="^1,^1,^1"]
|====
| | 1 | 0
| 1 | 1 | 0
| 0 | 0 | 0
|====
*Grammar*
[source,ANTLR4]
----
bitwise_and: expression '&' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | def
| byte | int | int | int | int | long | def
| short | int | int | int | int | long | def
| char | int | int | int | int | long | def
| int | int | int | int | int | long | def
| long | long | long | long | long | long | def
| def | def | def | def | def | def | def
|====
*Examples*
* Bitwise and with different integer types.
+
[source,Painless]
----
int i = 5 & 6; <1>
long l = i & 5L; <2>
----
+
<1> declare `int i`;
bitwise and `int 5` and `int 6` -> `int 4`;
store `int 4` in `i`
<2> declare `long l`
load from `int i` -> `int 4`;
promote `int 4` and `long 5`: result `long`;
implicit cast `int 4` to `long 4` -> `long 4`;
bitwise and `long 4` and `long 5` -> `long 4`;
store `long 4` to `l`
+
* Bitwise and with the `def` type.
+
[source,Painless]
----
def x = 15 & 6; <1>
def y = x & 5; <2>
----
<1> declare `def x`;
bitwise and `int 15` and `int 6` -> `int 6`;
implicit cast `int 6` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 6`;
bitwise and `int 6` and `int 5` -> `int 4`;
implicit cast `int 4` to `def` -> `def`;
store `def` to `y`
[[bitwise-xor-operator]]
==== Bitwise Xor
Use the `bitwise xor operator '^'` to XOR together each bit within two integer
type values where if one bit is a `1` and the other bit is a `0` at the same
index the resultant bit is `1` otherwise the resultant bit is `0`.
*Errors*
* If either of the values is a non-integer type.
*Bits*
The following table illustrates the resultant bit from the xoring of two bits.
[cols="^1,^1,^1"]
|====
| | 1 | 0
| 1 | 0 | 1
| 0 | 1 | 0
|====
*Grammar*
[source,ANTLR4]
----
bitwise_and: expression '^' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | def
| byte | int | int | int | int | long | def
| short | int | int | int | int | long | def
| char | int | int | int | int | long | def
| int | int | int | int | int | long | def
| long | long | long | long | long | long | def
| def | def | def | def | def | def | def
|====
*Examples*
* Bitwise xor with different integer types.
+
[source,Painless]
----
int i = 5 ^ 6; <1>
long l = i ^ 5L; <2>
----
+
<1> declare `int i`;
bitwise xor `int 5` and `int 6` -> `int 3`;
store `int 3` in `i`
<2> declare `long l`
load from `int i` -> `int 4`;
promote `int 3` and `long 5`: result `long`;
implicit cast `int 3` to `long 3` -> `long 3`;
bitwise xor `long 3` and `long 5` -> `long 6`;
store `long 6` to `l`
+
* Bitwise xor with the `def` type.
+
[source,Painless]
----
def x = 15 ^ 6; <1>
def y = x ^ 5; <2>
----
<1> declare `def x`;
bitwise xor `int 15` and `int 6` -> `int 9`;
implicit cast `int 9` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 9`;
bitwise xor `int 9` and `int 5` -> `int 12`;
implicit cast `int 12` to `def` -> `def`;
store `def` to `y`
[[bitwise-or-operator]]
==== Bitwise Or
Use the `bitwise or operator '|'` to OR together each bit within two integer
type values where if at least one bit is a `1` at the same index the resultant
bit is `1` otherwise the resultant bit is `0`.
*Errors*
* If either of the values is a non-integer type.
*Bits*
The following table illustrates the resultant bit from the oring of two bits.
[cols="^1,^1,^1"]
|====
| | 1 | 0
| 1 | 1 | 1
| 0 | 1 | 0
|====
*Grammar*
[source,ANTLR4]
----
bitwise_and: expression '|' expression;
----
*Promotion*
[cols="<1,^1,^1,^1,^1,^1,^1"]
|====
| | byte | short | char | int | long | def
| byte | int | int | int | int | long | def
| short | int | int | int | int | long | def
| char | int | int | int | int | long | def
| int | int | int | int | int | long | def
| long | long | long | long | long | long | def
| def | def | def | def | def | def | def
|====
*Examples*
* Bitwise or with different integer types.
+
[source,Painless]
----
int i = 5 | 6; <1>
long l = i | 8L; <2>
----
+
<1> declare `int i`;
bitwise or `int 5` and `int 6` -> `int 7`;
store `int 7` in `i`
<2> declare `long l`
load from `int i` -> `int 7`;
promote `int 7` and `long 8`: result `long`;
implicit cast `int 7` to `long 7` -> `long 7`;
bitwise or `long 7` and `long 8` -> `long 15`;
store `long 15` to `l`
+
* Bitwise or with the `def` type.
+
[source,Painless]
----
def x = 5 ^ 6; <1>
def y = x ^ 8; <2>
----
<1> declare `def x`;
bitwise or `int 5` and `int 6` -> `int 7`;
implicit cast `int 7` to `def` -> `def`;
store `def` in `x`
<2> declare `def y`;
load from `x` -> `def`;
implicit cast `def` to `int 7`;
bitwise or `int 7` and `int 8` -> `int 15`;
implicit cast `int 15` to `def` -> `def`;
store `def` to `y`