OpenSearch/docs/plugins/analysis-nori.asciidoc

546 lines
13 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[[analysis-nori]]
=== Korean (nori) Analysis Plugin
The Korean (nori) Analysis plugin integrates Lucene nori analysis
module into elasticsearch. It uses the https://bitbucket.org/eunjeon/mecab-ko-dic[mecab-ko-dic dictionary]
to perform morphological analysis of Korean texts.
:plugin_name: analysis-nori
include::install_remove.asciidoc[]
[[analysis-nori-analyzer]]
==== `nori` analyzer
The `nori` analyzer consists of the following tokenizer and token filters:
* <<analysis-nori-tokenizer,`nori_tokenizer`>>
* <<analysis-nori-speech,`nori_part_of_speech`>> token filter
* <<analysis-nori-readingform,`nori_readingform`>> token filter
* {ref}/analysis-lowercase-tokenfilter.html[`lowercase`] token filter
It supports the `decompound_mode` and `user_dictionary` settings from
<<analysis-nori-tokenizer,`nori_tokenizer`>> and the `stoptags` setting from
<<analysis-nori-speech,`nori_part_of_speech`>>.
[[analysis-nori-tokenizer]]
==== `nori_tokenizer`
The `nori_tokenizer` accepts the following settings:
`decompound_mode`::
+
--
The decompound mode determines how the tokenizer handles compound tokens.
It can be set to:
`none`::
No decomposition for compounds. Example output:
가거도항
가곡역
`discard`::
Decomposes compounds and discards the original form (*default*). Example output:
가곡역 => 가곡, 역
`mixed`::
Decomposes compounds and keeps the original form. Example output:
가곡역 => 가곡역, 가곡, 역
--
`discard_punctuation`::
Whether punctuation should be discarded from the output. Defaults to `true`.
`user_dictionary`::
+
--
The Nori tokenizer uses the https://bitbucket.org/eunjeon/mecab-ko-dic[mecab-ko-dic dictionary] by default.
A `user_dictionary` with custom nouns (`NNG`) may be appended to the default dictionary.
The dictionary should have the following format:
[source,txt]
-----------------------
<token> [<token 1> ... <token n>]
-----------------------
The first token is mandatory and represents the custom noun that should be added in
the dictionary. For compound nouns the custom segmentation can be provided
after the first token (`[<token 1> ... <token n>]`). The segmentation of the
custom compound nouns is controlled by the `decompound_mode` setting.
As a demonstration of how the user dictionary can be used, save the following
dictionary to `$ES_HOME/config/userdict_ko.txt`:
[source,txt]
-----------------------
c++ <1>
C샤프
세종
세종시 세종 시 <2>
-----------------------
<1> A simple noun
<2> A compound noun (`세종시`) followed by its decomposition: `세종` and `시`.
Then create an analyzer as follows:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"tokenizer": {
"nori_user_dict": {
"type": "nori_tokenizer",
"decompound_mode": "mixed",
"discard_punctuation": "false",
"user_dictionary": "userdict_ko.txt"
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "nori_user_dict"
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "세종시" <1>
}
--------------------------------------------------
<1> Sejong city
The above `analyze` request returns the following:
[source,console-result]
--------------------------------------------------
{
"tokens" : [ {
"token" : "세종시",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0,
"positionLength" : 2 <1>
}, {
"token" : "세종",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
}, {
"token" : "시",
"start_offset" : 2,
"end_offset" : 3,
"type" : "word",
"position" : 1
}]
}
--------------------------------------------------
<1> This is a compound token that spans two positions (`mixed` mode).
--
`user_dictionary_rules`::
+
--
You can also inline the rules directly in the tokenizer definition using
the `user_dictionary_rules` option:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"tokenizer": {
"nori_user_dict": {
"type": "nori_tokenizer",
"decompound_mode": "mixed",
"user_dictionary_rules": ["c++", "C샤프", "세종", "세종시 세종 시"]
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "nori_user_dict"
}
}
}
}
}
}
--------------------------------------------------
--
The `nori_tokenizer` sets a number of additional attributes per token that are used by token filters
to modify the stream.
You can view all these additional attributes with the following request:
[source,console]
--------------------------------------------------
GET _analyze
{
"tokenizer": "nori_tokenizer",
"text": "뿌리가 깊은 나무는", <1>
"attributes" : ["posType", "leftPOS", "rightPOS", "morphemes", "reading"],
"explain": true
}
--------------------------------------------------
<1> A tree with deep roots
Which responds with:
[source,console-result]
--------------------------------------------------
{
"detail": {
"custom_analyzer": true,
"charfilters": [],
"tokenizer": {
"name": "nori_tokenizer",
"tokens": [
{
"token": "뿌리",
"start_offset": 0,
"end_offset": 2,
"type": "word",
"position": 0,
"leftPOS": "NNG(General Noun)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "NNG(General Noun)"
},
{
"token": "가",
"start_offset": 2,
"end_offset": 3,
"type": "word",
"position": 1,
"leftPOS": "J(Ending Particle)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "J(Ending Particle)"
},
{
"token": "깊",
"start_offset": 4,
"end_offset": 5,
"type": "word",
"position": 2,
"leftPOS": "VA(Adjective)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "VA(Adjective)"
},
{
"token": "은",
"start_offset": 5,
"end_offset": 6,
"type": "word",
"position": 3,
"leftPOS": "E(Verbal endings)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "E(Verbal endings)"
},
{
"token": "나무",
"start_offset": 7,
"end_offset": 9,
"type": "word",
"position": 4,
"leftPOS": "NNG(General Noun)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "NNG(General Noun)"
},
{
"token": "는",
"start_offset": 9,
"end_offset": 10,
"type": "word",
"position": 5,
"leftPOS": "J(Ending Particle)",
"morphemes": null,
"posType": "MORPHEME",
"reading": null,
"rightPOS": "J(Ending Particle)"
}
]
},
"tokenfilters": []
}
}
--------------------------------------------------
[[analysis-nori-speech]]
==== `nori_part_of_speech` token filter
The `nori_part_of_speech` token filter removes tokens that match a set of
part-of-speech tags. The list of supported tags and their meanings can be found here:
{lucene-core-javadoc}/../analyzers-nori/org/apache/lucene/analysis/ko/POS.Tag.html[Part of speech tags]
It accepts the following setting:
`stoptags`::
An array of part-of-speech tags that should be removed.
and defaults to:
[source,js]
--------------------------------------------------
"stoptags": [
"E",
"IC",
"J",
"MAG", "MAJ", "MM",
"SP", "SSC", "SSO", "SC", "SE",
"XPN", "XSA", "XSN", "XSV",
"UNA", "NA", "VSV"
]
--------------------------------------------------
// NOTCONSOLE
For example:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "nori_tokenizer",
"filter": [
"my_posfilter"
]
}
},
"filter": {
"my_posfilter": {
"type": "nori_part_of_speech",
"stoptags": [
"NR" <1>
]
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "여섯 용이" <2>
}
--------------------------------------------------
<1> Korean numerals should be removed (`NR`)
<2> Six dragons
Which responds with:
[source,console-result]
--------------------------------------------------
{
"tokens" : [ {
"token" : "용",
"start_offset" : 3,
"end_offset" : 4,
"type" : "word",
"position" : 1
}, {
"token" : "이",
"start_offset" : 4,
"end_offset" : 5,
"type" : "word",
"position" : 2
} ]
}
--------------------------------------------------
[[analysis-nori-readingform]]
==== `nori_readingform` token filter
The `nori_readingform` token filter rewrites tokens written in Hanja to their Hangul form.
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "nori_tokenizer",
"filter": [ "nori_readingform" ]
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "鄕歌" <1>
}
--------------------------------------------------
<1> A token written in Hanja: Hyangga
Which responds with:
[source,console-result]
--------------------------------------------------
{
"tokens" : [ {
"token" : "향가", <1>
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
}]
}
--------------------------------------------------
<1> The Hanja form is replaced by the Hangul translation.
[[analysis-nori-number]]
==== `nori_number` token filter
The `nori_number` token filter normalizes Korean numbers
to regular Arabic decimal numbers in half-width characters.
Korean numbers are often written using a combination of Hangul and Arabic numbers with various kinds punctuation.
For example, 3.2천 means 3200.
This filter does this kind of normalization and allows a search for 3200 to match 3.2천 in text,
but can also be used to make range facets based on the normalized numbers and so on.
[NOTE]
====
Notice that this analyzer uses a token composition scheme and relies on punctuation tokens
being found in the token stream.
Please make sure your `nori_tokenizer` has `discard_punctuation` set to false.
In case punctuation characters, such as U+FF0E(), is removed from the token stream,
this filter would find input tokens and 2천 and give outputs 3 and 2000 instead of 3200,
which is likely not the intended result.
If you want to remove punctuation characters from your index that are not part of normalized numbers,
add a `stop` token filter with the punctuation you wish to remove after `nori_number` in your analyzer chain.
====
Below are some examples of normalizations this filter supports.
The input is untokenized text and the result is the single term attribute emitted for the input.
- 영영칠 -> 7
- 일영영영 -> 1000
- 삼천2백2십삼 -> 3223
- 조육백만오천일 -> 1000006005001
- .2천 -> 3200
- .2만345. -> 12345.67
- 4,647.100 -> 4647.1
- 15,7 -> 157 (be aware of this weakness)
For example:
[source,console]
--------------------------------------------------
PUT nori_sample
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "tokenizer_discard_puncuation_false",
"filter": [
"part_of_speech_stop_sp", "nori_number"
]
}
},
"tokenizer": {
"tokenizer_discard_puncuation_false": {
"type": "nori_tokenizer",
"discard_punctuation": "false"
}
},
"filter": {
"part_of_speech_stop_sp": {
"type": "nori_part_of_speech",
"stoptags": ["SP"]
}
}
}
}
}
}
GET nori_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "십만이천오백과 .2천"
}
--------------------------------------------------
Which results in:
[source,console-result]
--------------------------------------------------
{
"tokens" : [{
"token" : "102500",
"start_offset" : 0,
"end_offset" : 6,
"type" : "word",
"position" : 0
}, {
"token" : "과",
"start_offset" : 6,
"end_offset" : 7,
"type" : "word",
"position" : 1
}, {
"token" : "3200",
"start_offset" : 8,
"end_offset" : 12,
"type" : "word",
"position" : 2
}]
}
--------------------------------------------------