162 lines
4.8 KiB
Plaintext
162 lines
4.8 KiB
Plaintext
[[search-aggregations-pipeline-bucket-script-aggregation]]
|
|
=== Bucket Script Aggregation
|
|
|
|
experimental[]
|
|
|
|
A parent pipeline aggregation which executes a script which can perform per bucket computations on specified metrics
|
|
in the parent multi-bucket aggregation. The specified metric must be numeric and the script must return a numeric value.
|
|
|
|
==== Syntax
|
|
|
|
A `bucket_script` aggregation looks like this in isolation:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"bucket_script": {
|
|
"buckets_path": {
|
|
"my_var1": "the_sum", <1>
|
|
"my_var2": "the_value_count"
|
|
},
|
|
"script": "my_var1 / my_var2"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
<1> Here, `my_var1` is the name of the variable for this buckets path to use in the script, `the_sum` is the path to
|
|
the metrics to use for that variable.
|
|
|
|
|
|
.`bucket_script` Parameters
|
|
|===
|
|
|Parameter Name |Description |Required |Default Value
|
|
|`script` |The script to run for this aggregation. The script can be inline, file or indexed. (see <<modules-scripting>>
|
|
for more details) |Required |
|
|
|`buckets_path` |A map of script variables and their associated path to the buckets we wish to use for the variable
|
|
(see <<buckets-path-syntax>> for more details) |Required |
|
|
|`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
|
|
details)|Optional, defaults to `skip` |
|
|
|`format` |format to apply to the output value of this aggregation |Optional, defaults to `null` |
|
|
|===
|
|
|
|
The following snippet calculates the ratio percentage of t-shirt sales compared to total sales each month:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST /sales/_search
|
|
{
|
|
"size": 0,
|
|
"aggs" : {
|
|
"sales_per_month" : {
|
|
"date_histogram" : {
|
|
"field" : "date",
|
|
"interval" : "month"
|
|
},
|
|
"aggs": {
|
|
"total_sales": {
|
|
"sum": {
|
|
"field": "price"
|
|
}
|
|
},
|
|
"t-shirts": {
|
|
"filter": {
|
|
"term": {
|
|
"type": "t-shirt"
|
|
}
|
|
},
|
|
"aggs": {
|
|
"sales": {
|
|
"sum": {
|
|
"field": "price"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"t-shirt-percentage": {
|
|
"bucket_script": {
|
|
"buckets_path": {
|
|
"tShirtSales": "t-shirts>sales",
|
|
"totalSales": "total_sales"
|
|
},
|
|
"script": "tShirtSales / totalSales * 100"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[setup:sales]
|
|
|
|
And the following may be the response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"took": 11,
|
|
"timed_out": false,
|
|
"_shards": ...,
|
|
"hits": ...,
|
|
"aggregations": {
|
|
"sales_per_month": {
|
|
"buckets": [
|
|
{
|
|
"key_as_string": "2015/01/01 00:00:00",
|
|
"key": 1420070400000,
|
|
"doc_count": 3,
|
|
"total_sales": {
|
|
"value": 550.0
|
|
},
|
|
"t-shirts": {
|
|
"doc_count": 1,
|
|
"sales": {
|
|
"value": 200.0
|
|
}
|
|
},
|
|
"t-shirt-percentage": {
|
|
"value": 36.36363636363637
|
|
}
|
|
},
|
|
{
|
|
"key_as_string": "2015/02/01 00:00:00",
|
|
"key": 1422748800000,
|
|
"doc_count": 2,
|
|
"total_sales": {
|
|
"value": 60.0
|
|
},
|
|
"t-shirts": {
|
|
"doc_count": 1,
|
|
"sales": {
|
|
"value": 10.0
|
|
}
|
|
},
|
|
"t-shirt-percentage": {
|
|
"value": 16.666666666666664
|
|
}
|
|
},
|
|
{
|
|
"key_as_string": "2015/03/01 00:00:00",
|
|
"key": 1425168000000,
|
|
"doc_count": 2,
|
|
"total_sales": {
|
|
"value": 375.0
|
|
},
|
|
"t-shirts": {
|
|
"doc_count": 1,
|
|
"sales": {
|
|
"value": 175.0
|
|
}
|
|
},
|
|
"t-shirt-percentage": {
|
|
"value": 46.666666666666664
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
|
|
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
|
|
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]
|