OpenSearch/docs/reference/indices/analyze.asciidoc
Christoph Büscher 25aac4f77f
Remove include_type_name in asciidoc where possible (#37568)
The "include_type_name" parameter was temporarily introduced in #37285 to facilitate
moving the default parameter setting to "false" in many places in the documentation
code snippets. Most of the places can simply be reverted without causing errors.
In this change I looked for asciidoc files that contained the
"include_type_name=true" addition when creating new indices but didn't look
likey they made use of the "_doc" type for mappings. This is mostly the case
e.g. in the analysis docs where index creating often only contains settings. I
manually corrected the use of types in some places where the docs still used an
explicit type name and not the dummy "_doc" type.
2019-01-18 09:34:11 +01:00

246 lines
6.4 KiB
Plaintext

[[indices-analyze]]
== Analyze
Performs the analysis process on a text and return the tokens breakdown
of the text.
Can be used without specifying an index against one of the many built in
analyzers:
[source,js]
--------------------------------------------------
GET _analyze
{
"analyzer" : "standard",
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
If text parameter is provided as array of strings, it is analyzed as a multi-valued field.
[source,js]
--------------------------------------------------
GET _analyze
{
"analyzer" : "standard",
"text" : ["this is a test", "the second text"]
}
--------------------------------------------------
// CONSOLE
Or by building a custom transient analyzer out of tokenizers,
token filters and char filters. Token filters can use the shorter 'filter'
parameter name:
[source,js]
--------------------------------------------------
GET _analyze
{
"tokenizer" : "keyword",
"filter" : ["lowercase"],
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
[source,js]
--------------------------------------------------
GET _analyze
{
"tokenizer" : "keyword",
"filter" : ["lowercase"],
"char_filter" : ["html_strip"],
"text" : "this is a <b>test</b>"
}
--------------------------------------------------
// CONSOLE
deprecated[5.0.0, Use `filter`/`char_filter` instead of `filters`/`char_filters` and `token_filters` has been removed]
Custom tokenizers, token filters, and character filters can be specified in the request body as follows:
[source,js]
--------------------------------------------------
GET _analyze
{
"tokenizer" : "whitespace",
"filter" : ["lowercase", {"type": "stop", "stopwords": ["a", "is", "this"]}],
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
It can also run against a specific index:
[source,js]
--------------------------------------------------
GET analyze_sample/_analyze
{
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
// TEST[setup:analyze_sample]
The above will run an analysis on the "this is a test" text, using the
default index analyzer associated with the `analyze_sample` index. An `analyzer`
can also be provided to use a different analyzer:
[source,js]
--------------------------------------------------
GET analyze_sample/_analyze
{
"analyzer" : "whitespace",
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
// TEST[setup:analyze_sample]
Also, the analyzer can be derived based on a field mapping, for example:
[source,js]
--------------------------------------------------
GET analyze_sample/_analyze
{
"field" : "obj1.field1",
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
// TEST[setup:analyze_sample]
Will cause the analysis to happen based on the analyzer configured in the
mapping for `obj1.field1` (and if not, the default index analyzer).
A `normalizer` can be provided for keyword field with normalizer associated with the `analyze_sample` index.
[source,js]
--------------------------------------------------
GET analyze_sample/_analyze
{
"normalizer" : "my_normalizer",
"text" : "BaR"
}
--------------------------------------------------
// CONSOLE
// TEST[setup:analyze_sample]
Or by building a custom transient normalizer out of token filters and char filters.
[source,js]
--------------------------------------------------
GET _analyze
{
"filter" : ["lowercase"],
"text" : "BaR"
}
--------------------------------------------------
// CONSOLE
=== Explain Analyze
If you want to get more advanced details, set `explain` to `true` (defaults to `false`). It will output all token attributes for each token.
You can filter token attributes you want to output by setting `attributes` option.
NOTE: The format of the additional detail information is labelled as experimental in Lucene and it may change in the future.
[source,js]
--------------------------------------------------
GET _analyze
{
"tokenizer" : "standard",
"filter" : ["snowball"],
"text" : "detailed output",
"explain" : true,
"attributes" : ["keyword"] <1>
}
--------------------------------------------------
// CONSOLE
<1> Set "keyword" to output "keyword" attribute only
The request returns the following result:
[source,js]
--------------------------------------------------
{
"detail" : {
"custom_analyzer" : true,
"charfilters" : [ ],
"tokenizer" : {
"name" : "standard",
"tokens" : [ {
"token" : "detailed",
"start_offset" : 0,
"end_offset" : 8,
"type" : "<ALPHANUM>",
"position" : 0
}, {
"token" : "output",
"start_offset" : 9,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 1
} ]
},
"tokenfilters" : [ {
"name" : "snowball",
"tokens" : [ {
"token" : "detail",
"start_offset" : 0,
"end_offset" : 8,
"type" : "<ALPHANUM>",
"position" : 0,
"keyword" : false <1>
}, {
"token" : "output",
"start_offset" : 9,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 1,
"keyword" : false <1>
} ]
} ]
}
}
--------------------------------------------------
// TESTRESPONSE
<1> Output only "keyword" attribute, since specify "attributes" in the request.
[[tokens-limit-settings]]
[float]
== Settings to prevent tokens explosion
Generating excessive amount of tokens may cause a node to run out of memory.
The following setting allows to limit the number of tokens that can be produced:
`index.analyze.max_token_count`::
The maximum number of tokens that can be produced using `_analyze` API.
The default value is `10000`. If more than this limit of tokens gets
generated, an error will be thrown. The `_analyze` endpoint without a specified
index will always use `10000` value as a limit. This setting allows you to control
the limit for a specific index:
[source,js]
--------------------------------------------------
PUT analyze_sample
{
"settings" : {
"index.analyze.max_token_count" : 20000
}
}
--------------------------------------------------
// CONSOLE
[source,js]
--------------------------------------------------
GET analyze_sample/_analyze
{
"text" : "this is a test"
}
--------------------------------------------------
// CONSOLE
// TEST[setup:analyze_sample]