mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-02-26 06:46:10 +00:00
* Register data node stats from info carried back in search responses This is part of #24915, where we now calculate the EWMA of service time for tasks in the search threadpool, and send that as well as the current queue size back to the coordinating node. The coordinating node now tracks this information for each node in the cluster. This information will be used in the future the determining the best replica a search request should be routed to. This change has no user-visible difference. * Move response time timing into ResponseListenerWrapper * Move ResponseListenerWrapper to ActionListener instead of SearchActionListener Also removes the logger * Move `requestIndex` back to private * De-guice-ify ResponseCollectorService \o/ * Undo all changes to SearchQueryThenFetchAsyncAction * Remove unneeded response collector from TransportSearchAction * Undo all changes to SearchDfsQueryThenFetchAsyncAction * Completely rewrite the inside of ResponseCollectorService's record keeping * Documentation and cleanups for ResponseCollectorService * Add unit test for collection of queue size and service time * Fix Guice construction error * Add basic unit tests for ResponseCollectorService * Fix version constant for the master merge * Fix test compilation after master merge * Add a test for node removal on cluster changed event * Remove integration test as there are now unit tests * Rename ResponseListenerWrapper -> SearchExecutionStatsCollector * Fix line-length * Make classes private and final where appropriate * Pass nodeId into SearchExecutionStatsCollector and use only ActionListener * Get nodeId from connection so searchShardTarget can be private * Remove threadpool from SearchContext, get it from IndexShard instead * Add missing import * Use BiFunction for responseWrapper rather than passing in collector service
h1. Elasticsearch h2. A Distributed RESTful Search Engine h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch Elasticsearch is a distributed RESTful search engine built for the cloud. Features include: * Distributed and Highly Available Search Engine. ** Each index is fully sharded with a configurable number of shards. ** Each shard can have one or more replicas. ** Read / Search operations performed on any of the replica shards. * Multi Tenant with Multi Types. ** Support for more than one index. ** Support for more than one type per index. ** Index level configuration (number of shards, index storage, ...). * Various set of APIs ** HTTP RESTful API ** Native Java API. ** All APIs perform automatic node operation rerouting. * Document oriented ** No need for upfront schema definition. ** Schema can be defined per type for customization of the indexing process. * Reliable, Asynchronous Write Behind for long term persistency. * (Near) Real Time Search. * Built on top of Lucene ** Each shard is a fully functional Lucene index ** All the power of Lucene easily exposed through simple configuration / plugins. * Per operation consistency ** Single document level operations are atomic, consistent, isolated and durable. * Open Source under the Apache License, version 2 ("ALv2") h2. Getting Started First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about. h3. Requirements You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information. h3. Installation * "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution. * Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows. * Run @curl -X GET http://localhost:9200/@. * Start more servers ... h3. Indexing Let's try and index some twitter like information. First, let's create a twitter user, and add some tweets (the @twitter@ index will be created automatically): <pre> curl -XPUT 'http://localhost:9200/twitter/user/kimchy?pretty' -H 'Content-Type: application/json' -d '{ "name" : "Shay Banon" }' curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' </pre> Now, let's see if the information was added by GETting it: <pre> curl -XGET 'http://localhost:9200/twitter/user/kimchy?pretty=true' curl -XGET 'http://localhost:9200/twitter/tweet/1?pretty=true' curl -XGET 'http://localhost:9200/twitter/tweet/2?pretty=true' </pre> h3. Searching Mmm search..., shouldn't it be elastic? Let's find all the tweets that @kimchy@ posted: <pre> curl -XGET 'http://localhost:9200/twitter/tweet/_search?q=user:kimchy&pretty=true' </pre> We can also use the JSON query language Elasticsearch provides instead of a query string: <pre> curl -XGET 'http://localhost:9200/twitter/tweet/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match" : { "user": "kimchy" } } }' </pre> Just for kicks, let's get all the documents stored (we should see the user as well): <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> We can also do range search (the @postDate@ was automatically identified as date) <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "range" : { "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" } } } }' </pre> There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser. h3. Multi Tenant - Indices and Types Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data. Elasticsearch supports multiple indices, as well as multiple types per index. In the previous example we used an index called @twitter@, with two types, @user@ and @tweet@. Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case: <pre> curl -XPUT 'http://localhost:9200/kimchy/info/1?pretty' -H 'Content-Type: application/json' -d '{ "name" : "Shay Banon" }' curl -XPUT 'http://localhost:9200/kimchy/tweet/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/kimchy/tweet/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' </pre> The above will index information into the @kimchy@ index, with two types, @info@ and @tweet@. Each user will get their own special index. Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well): <pre> curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d ' { "index" : { "number_of_shards" : 1, "number_of_replicas" : 1 } }' </pre> Search (and similar operations) are multi index aware. This means that we can easily search on more than one index (twitter user), for example: <pre> curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> Or on all the indices: <pre> curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> {One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends). h3. Distributed, Highly Available Let's face it, things will fail.... Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replica. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards). In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed. h3. Where to go from here? We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only. h3. Building from Source Elasticsearch uses "Gradle":https://gradle.org for its build system. You'll need to have at least version 3.3 of Gradle installed. In order to create a distribution, simply run the @gradle assemble@ command in the cloned directory. The distribution for each project will be created under the @build/distributions@ directory in that project. See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite. h3. Upgrading from Elasticsearch 1.x? In order to ensure a smooth upgrade process from earlier versions of Elasticsearch (1.x), it is required to perform a full cluster restart. Please see the "setup reference": https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process. h1. License <pre> This software is licensed under the Apache License, version 2 ("ALv2"), quoted below. Copyright 2009-2016 Elasticsearch <https://www.elastic.co> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. </pre>
Description
Languages
Java
99.5%
Groovy
0.4%