241 lines
7.5 KiB
Plaintext
241 lines
7.5 KiB
Plaintext
[[search-aggregations-metrics-geocentroid-aggregation]]
|
|
=== Geo Centroid Aggregation
|
|
|
|
A metric aggregation that computes the weighted https://en.wikipedia.org/wiki/Centroid[centroid] from all coordinate values for geo fields.
|
|
|
|
Example:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT /museums
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"location": {
|
|
"type": "geo_point"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
POST /museums/_bulk?refresh
|
|
{"index":{"_id":1}}
|
|
{"location": "52.374081,4.912350", "city": "Amsterdam", "name": "NEMO Science Museum"}
|
|
{"index":{"_id":2}}
|
|
{"location": "52.369219,4.901618", "city": "Amsterdam", "name": "Museum Het Rembrandthuis"}
|
|
{"index":{"_id":3}}
|
|
{"location": "52.371667,4.914722", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum"}
|
|
{"index":{"_id":4}}
|
|
{"location": "51.222900,4.405200", "city": "Antwerp", "name": "Letterenhuis"}
|
|
{"index":{"_id":5}}
|
|
{"location": "48.861111,2.336389", "city": "Paris", "name": "Musée du Louvre"}
|
|
{"index":{"_id":6}}
|
|
{"location": "48.860000,2.327000", "city": "Paris", "name": "Musée d'Orsay"}
|
|
|
|
POST /museums/_search?size=0
|
|
{
|
|
"aggs" : {
|
|
"centroid" : {
|
|
"geo_centroid" : {
|
|
"field" : "location" <1>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
<1> The `geo_centroid` aggregation specifies the field to use for computing the centroid. (NOTE: field must be a <<geo-point>> type)
|
|
|
|
The above aggregation demonstrates how one would compute the centroid of the location field for all documents with a crime type of burglary
|
|
|
|
The response for the above aggregation:
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
...
|
|
"aggregations": {
|
|
"centroid": {
|
|
"location": {
|
|
"lat": 51.00982965203002,
|
|
"lon": 3.9662131341174245
|
|
},
|
|
"count": 6
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
|
|
|
|
The `geo_centroid` aggregation is more interesting when combined as a sub-aggregation to other bucket aggregations.
|
|
|
|
Example:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
POST /museums/_search?size=0
|
|
{
|
|
"aggs" : {
|
|
"cities" : {
|
|
"terms" : { "field" : "city.keyword" },
|
|
"aggs" : {
|
|
"centroid" : {
|
|
"geo_centroid" : { "field" : "location" }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[continued]
|
|
|
|
The above example uses `geo_centroid` as a sub-aggregation to a
|
|
<<search-aggregations-bucket-terms-aggregation, terms>> bucket aggregation
|
|
for finding the central location for museums in each city.
|
|
|
|
The response for the above aggregation:
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
...
|
|
"aggregations": {
|
|
"cities": {
|
|
"sum_other_doc_count": 0,
|
|
"doc_count_error_upper_bound": 0,
|
|
"buckets": [
|
|
{
|
|
"key": "Amsterdam",
|
|
"doc_count": 3,
|
|
"centroid": {
|
|
"location": {
|
|
"lat": 52.371655656024814,
|
|
"lon": 4.909563297405839
|
|
},
|
|
"count": 3
|
|
}
|
|
},
|
|
{
|
|
"key": "Paris",
|
|
"doc_count": 2,
|
|
"centroid": {
|
|
"location": {
|
|
"lat": 48.86055548675358,
|
|
"lon": 2.3316944623366
|
|
},
|
|
"count": 2
|
|
}
|
|
},
|
|
{
|
|
"key": "Antwerp",
|
|
"doc_count": 1,
|
|
"centroid": {
|
|
"location": {
|
|
"lat": 51.22289997059852,
|
|
"lon": 4.40519998781383
|
|
},
|
|
"count": 1
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
|
|
|
|
|
|
[discrete]
|
|
[role="xpack"]
|
|
==== Geo Centroid Aggregation on `geo_shape` fields
|
|
|
|
The centroid metric for geo-shapes is more nuanced than for points. The centroid of a specific aggregation bucket
|
|
containing shapes is the centroid of the highest-dimensionality shape type in the bucket. For example, if a bucket contains
|
|
shapes comprising of polygons and lines, then the lines do not contribute to the centroid metric. Each type of shape's
|
|
centroid is calculated differently. Envelopes and circles ingested via the <<ingest-circle-processor>> are treated
|
|
as polygons.
|
|
|
|
|===
|
|
|Geometry Type | Centroid Calculation
|
|
|
|
|[Multi]Point
|
|
|equally weighted average of all the coordinates
|
|
|
|
|[Multi]LineString
|
|
|a weighted average of all the centroids of each segment, where the weight of each segment is its length in degrees
|
|
|
|
|[Multi]Polygon
|
|
|a weighted average of all the centroids of all the triangles of a polygon where the triangles are formed by every two consecutive vertices and the starting-point.
|
|
holes have negative weights. weights represent the area of the triangle in deg^2 calculated
|
|
|
|
|GeometryCollection
|
|
|The centroid of all the underlying geometries with the highest dimension. If Polygons and Lines and/or Points, then lines and/or points are ignored.
|
|
If Lines and Points, then points are ignored
|
|
|===
|
|
|
|
Example:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT /places
|
|
{
|
|
"mappings": {
|
|
"properties": {
|
|
"geometry": {
|
|
"type": "geo_shape"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
POST /places/_bulk?refresh
|
|
{"index":{"_id":1}}
|
|
{"name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" }
|
|
{"index":{"_id":2}}
|
|
{"name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } }
|
|
|
|
POST /places/_search?size=0
|
|
{
|
|
"aggs" : {
|
|
"centroid" : {
|
|
"geo_centroid" : {
|
|
"field" : "geometry"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
...
|
|
"aggregations": {
|
|
"centroid": {
|
|
"location": {
|
|
"lat": 52.39296147599816,
|
|
"lon": 4.967404240742326
|
|
},
|
|
"count": 2
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/\.\.\./"took": $body.took,"_shards": $body._shards,"hits":$body.hits,"timed_out":false,/]
|
|
|
|
|
|
[WARNING]
|
|
.Using `geo_centroid` as a sub-aggregation of `geohash_grid`
|
|
====
|
|
The <<search-aggregations-bucket-geohashgrid-aggregation,`geohash_grid`>>
|
|
aggregation places documents, not individual geo-points, into buckets. If a
|
|
document's `geo_point` field contains <<array,multiple values>>, the document
|
|
could be assigned to multiple buckets, even if one or more of its geo-points are
|
|
outside the bucket boundaries.
|
|
|
|
If a `geocentroid` sub-aggregation is also used, each centroid is calculated
|
|
using all geo-points in a bucket, including those outside the bucket boundaries.
|
|
This can result in centroids outside of bucket boundaries.
|
|
====
|