🔎 Open source distributed and RESTful search engine.
Go to file
Jason Tedor 65c107b47d
Fix unknown licenses (#31223)
The goal of this commit is to address unknown licenses when producing
the dependencies info report. We have two different checks that we run
on licenses. The first check is whether or not we have stashed a copy of
the license text for a dependency in the repository. The second is to
map every dependency to a license type (e.g., BSD 3-clause). The problem
here is that the way we were handling licenses in the second check
differs from how we handle licenses in the first check. The first check
works by finding a license file with the name of the artifact followed
by the text -LICENSE.txt. Yet in some cases we allow mapping an artifact
name to another name used to check for the license (e.g., we map
lucene-.* to lucene, and opensaml-.* to shibboleth. The second check
understood the first way of looking for a license file but not the
second way. So in this commit we teach the second check about the
mappings from artifact names to license names. We do this by copying the
configuration from the dependencyLicenses task to the dependenciesInfo
task and then reusing the code from the first check in the second
check. There were some other challenges here though. For example,
dependenciesInfo was checking too many dependencies. For now, we should
only be checking direct dependencies and leaving transitive dependencies
from another org.elasticsearch artifact to that artifact (we want to do
this differently in a follow-up). We also want to disable
dependenciesInfo for projects that we do not publish, users only care
about licenses they might be exposed to if they use our assembled
products. With all of the changes in this commit we have eliminated all
unknown licenses. A follow-up will enforce that when we add a new
dependency it does not get mapped to unknown, these will be forbidden in
the future. Therefore, with this change and earlier changes are left
having no unknown licenses and two custom licenses; custom here means it
does not map to an SPDX license type. Those two licenses are xz and
ldapsdk. A future change will not allow additional custom licenses
unless they are explicitly whitelisted. This ensures that if a new
dependency is added it is mapped to an SPDX license or mapped to custom
because it does not have an SPDX license.
2018-06-09 07:28:41 -04:00
.ci Java versions for ci (#29320) 2018-04-02 14:24:25 -04:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Solve Gradle deprecation warnings around shadowJar (#30483) 2018-05-10 12:49:41 +03:00
buildSrc Fix unknown licenses (#31223) 2018-06-09 07:28:41 -04:00
client Fix unknown licenses (#31223) 2018-06-09 07:28:41 -04:00
dev-tools Require HTTP::Tiny 0.070 for release notes script 2018-03-20 16:57:36 +01:00
distribution Fix unknown licenses (#31223) 2018-06-09 07:28:41 -04:00
docs [DOCS] Added 'fail_on_unsupported_field' param to MLT. Closes #28008 (#31160) 2018-06-08 14:41:01 -07:00
gradle/wrapper Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 2018-05-01 16:46:58 -07:00
libs Rename elasticsearch-nio to nio (#31186) 2018-06-07 17:00:00 -04:00
licenses Reorganize license files 2018-04-20 15:33:59 -07:00
modules Remove DocumentFieldMappers#smartNameFieldMapper, as it is no longer needed. (#31018) 2018-06-08 09:24:09 -07:00
plugins Remove version from license file name for GCS SDK (#31221) 2018-06-08 21:19:16 -04:00
qa Rename elasticsearch-core to core (#31185) 2018-06-07 16:50:21 -04:00
rest-api-spec Move number of language analyzers to analysis-common module (#31143) 2018-06-08 08:58:46 +02:00
server Fully encapsulate LocalCheckpointTracker inside of the engine (#31213) 2018-06-08 17:19:41 -06:00
test Fix unknown licenses (#31223) 2018-06-09 07:28:41 -04:00
x-pack Fix unknown licenses (#31223) 2018-06-09 07:28:41 -04:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.editorconfig Add simple EditorConfig 2015-11-30 14:47:03 +01:00
.gitattributes Add a CHANGELOG file for release notes. (#29450) 2018-04-18 07:42:05 -07:00
.gitignore Cleanup .gitignore (#30145) 2018-04-25 22:11:40 -04:00
CONTRIBUTING.md [DOCS] Update readme for testing x-pack code snippets (#30696) 2018-05-31 09:32:22 -07:00
LICENSE.txt Reorganize license files 2018-04-20 15:33:59 -07:00
NOTICE.txt [Docs] Update Copyright notices to 2018 (#29404) 2018-04-06 16:21:20 +02:00
README.textile Remove license information from README.textile (#29198) 2018-03-22 10:20:18 -04:00
TESTING.asciidoc [test] java tests for archive packaging (#30734) 2018-05-23 10:37:57 -07:00
Vagrantfile [test] java tests for archive packaging (#30734) 2018-05-23 10:37:57 -07:00
build.gradle Fix unknown licenses (#31223) 2018-06-09 07:28:41 -04:00
gradle.properties Bump Gradle heap to 2 GB (#30535) 2018-05-11 14:30:36 -04:00
gradlew Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 2018-05-01 16:46:58 -07:00
gradlew.bat Revert "Build: Move gradle wrapper jar to a dot dir (#30146)" 2018-05-01 16:46:58 -07:00
settings.gradle Rename elasticsearch-nio to nio (#31186) 2018-06-07 17:00:00 -04:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/3?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @post_date@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "index" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from Elasticsearch 1.x?

In order to ensure a smooth upgrade process from earlier versions of
Elasticsearch (1.x), it is required to perform a full cluster restart. Please
see the "setup reference":
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html
for more details on the upgrade process.