mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-02-05 20:48:22 +00:00
Node IDs are currently randomly generated during node startup. That means they change every time the node is restarted. While this doesn't matter for ES proper, it makes it hard for external services to track nodes. Another, more minor, side effect is that indexing the output of, say, the node stats API results in creating new fields due to node ID being used as keys. The first approach I considered was to use the node's published address as the base for the id. We already [treat nodes with the same address as the same](https://github.com/elastic/elasticsearch/blob/master/core/src/main/java/org/elasticsearch/discovery/zen/NodeJoinController.java#L387) so this is a simple change (see [here](https://github.com/elastic/elasticsearch/compare/master...bleskes:node_persistent_id_based_on_address)). While this is simple and it works for probably most cases, it is not perfect. For example, if after a node restart, the node is not able to bind to the same port (because it's not yet freed by the OS), it will cause the node to still change identity. Also in environments where the host IP can change due to a host restart, identity will not be the same. Due to those limitation, I opted to go with a different approach where the node id will be persisted in the node's data folder. This has the upside of connecting the id to the nodes data. It also means that the host can be adapted in any way (replace network cards, attach storage to a new VM). I It does however also have downsides - we now run the risk of two nodes having the same id, if someone copies clones a data folder from one node to another. To mitigate this I changed the semantics of the protection against multiple nodes with the same address to be stricter - it will now reject the incoming join if a node exists with the same id but a different address. Note that if the existing node doesn't respond to pings (i.e., it's not alive) it will be removed and the new node will be accepted when it tries another join. Last, and most importantly, this change requires that *all* nodes persist data to disk. This is a change from current behavior where only data & master nodes store local files. This is the main reason for marking this PR as breaking. Other less important notes: - DummyTransportAddress is removed as we need a unique network address per node. Use `LocalTransportAddress.buildUnique()` instead. - I renamed `node.add_lid_to_custom_path` to `node.add_lock_id_to_custom_path` to avoid confusion with the node ID which is now part of the `NodeEnvironment` logic. - I removed the `version` paramater from `MetaDataStateFormat#write` , it wasn't really used and was just in the way :) - TribeNodes are special in the sense that they do start multiple sub-nodes (previously known as client nodes). Those sub-nodes do not store local files but derive their ID from the parent node id, so they are generated consistently.
h1. Elasticsearch h2. A Distributed RESTful Search Engine h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch Elasticsearch is a distributed RESTful search engine built for the cloud. Features include: * Distributed and Highly Available Search Engine. ** Each index is fully sharded with a configurable number of shards. ** Each shard can have one or more replicas. ** Read / Search operations performed on any of the replica shards. * Multi Tenant with Multi Types. ** Support for more than one index. ** Support for more than one type per index. ** Index level configuration (number of shards, index storage, ...). * Various set of APIs ** HTTP RESTful API ** Native Java API. ** All APIs perform automatic node operation rerouting. * Document oriented ** No need for upfront schema definition. ** Schema can be defined per type for customization of the indexing process. * Reliable, Asynchronous Write Behind for long term persistency. * (Near) Real Time Search. * Built on top of Lucene ** Each shard is a fully functional Lucene index ** All the power of Lucene easily exposed through simple configuration / plugins. * Per operation consistency ** Single document level operations are atomic, consistent, isolated and durable. * Open Source under the Apache License, version 2 ("ALv2") h2. Getting Started First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about. h3. Requirements You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information. h3. Installation * "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution. * Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows. * Run @curl -X GET http://localhost:9200/@. * Start more servers ... h3. Indexing Let's try and index some twitter like information. First, let's create a twitter user, and add some tweets (the @twitter@ index will be created automatically): <pre> curl -XPUT 'http://localhost:9200/twitter/user/kimchy?pretty' -d '{ "name" : "Shay Banon" }' curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' </pre> Now, let's see if the information was added by GETting it: <pre> curl -XGET 'http://localhost:9200/twitter/user/kimchy?pretty=true' curl -XGET 'http://localhost:9200/twitter/tweet/1?pretty=true' curl -XGET 'http://localhost:9200/twitter/tweet/2?pretty=true' </pre> h3. Searching Mmm search..., shouldn't it be elastic? Let's find all the tweets that @kimchy@ posted: <pre> curl -XGET 'http://localhost:9200/twitter/tweet/_search?q=user:kimchy&pretty=true' </pre> We can also use the JSON query language Elasticsearch provides instead of a query string: <pre> curl -XGET 'http://localhost:9200/twitter/tweet/_search?pretty=true' -d ' { "query" : { "match" : { "user": "kimchy" } } }' </pre> Just for kicks, let's get all the documents stored (we should see the user as well): <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -d ' { "query" : { "match_all" : {} } }' </pre> We can also do range search (the @postDate@ was automatically identified as date) <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -d ' { "query" : { "range" : { "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" } } } }' </pre> There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser. h3. Multi Tenant - Indices and Types Maan, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data. Elasticsearch supports multiple indices, as well as multiple types per index. In the previous example we used an index called @twitter@, with two types, @user@ and @tweet@. Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case: <pre> curl -XPUT 'http://localhost:9200/kimchy/info/1?pretty' -d '{ "name" : "Shay Banon" }' curl -XPUT 'http://localhost:9200/kimchy/tweet/1?pretty' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/kimchy/tweet/2?pretty' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' </pre> The above will index information into the @kimchy@ index, with two types, @info@ and @tweet@. Each user will get their own special index. Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well): <pre> curl -XPUT http://localhost:9200/another_user?pretty -d ' { "index" : { "number_of_shards" : 1, "number_of_replicas" : 1 } }' </pre> Search (and similar operations) are multi index aware. This means that we can easily search on more than one index (twitter user), for example: <pre> curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -d ' { "query" : { "match_all" : {} } }' </pre> Or on all the indices: <pre> curl -XGET 'http://localhost:9200/_search?pretty=true' -d ' { "query" : { "match_all" : {} } }' </pre> {One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends). h3. Distributed, Highly Available Let's face it, things will fail.... Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replica. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards). In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed. h3. Where to go from here? We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only. h3. Building from Source Elasticsearch uses "Gradle":https://gradle.org for its build system. You'll need to have a modern version of Gradle installed - 2.13 should do. In order to create a distribution, simply run the @gradle assemble@ command in the cloned directory. The distribution for each project will be created under the @build/distributions@ directory in that project. See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite. h3. Upgrading from Elasticsearch 1.x? In order to ensure a smooth upgrade process from earlier versions of Elasticsearch (1.x), it is required to perform a full cluster restart. Please see the "setup reference": https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process. h1. License <pre> This software is licensed under the Apache License, version 2 ("ALv2"), quoted below. Copyright 2009-2016 Elasticsearch <https://www.elastic.co> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. </pre>
Description
Languages
Java
99.5%
Groovy
0.4%