OpenSearch/docs/java-rest/high-level/ml/evaluate-data-frame.asciidoc

134 lines
5.4 KiB
Plaintext

--
:api: evaluate-data-frame
:request: EvaluateDataFrameRequest
:response: EvaluateDataFrameResponse
--
[role="xpack"]
[id="{upid}-{api}"]
=== Evaluate {dfanalytics} API
Evaluates the {ml} algorithm that ran on a {dataframe}.
The API accepts an +{request}+ object and returns an +{response}+.
[id="{upid}-{api}-request"]
==== Evaluate {dfanalytics} request
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-request]
--------------------------------------------------
<1> Constructing a new evaluation request
<2> Reference to an existing index
<3> The query with which to select data from indices
<4> Evaluation to be performed
==== Evaluation
Evaluation to be performed.
Currently, supported evaluations include: +OutlierDetection+, +Classification+, +Regression+.
===== Outlier detection
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-evaluation-outlierdetection]
--------------------------------------------------
<1> Constructing a new evaluation
<2> Name of the field in the index. Its value denotes the actual (i.e. ground truth) label for an example. Must be either true or false.
<3> Name of the field in the index. Its value denotes the probability (as per some ML algorithm) of the example being classified as positive.
<4> The remaining parameters are the metrics to be calculated based on the two fields described above
<5> {wikipedia}/Precision_and_recall#Precision[Precision] calculated at thresholds: 0.4, 0.5 and 0.6
<6> {wikipedia}/Precision_and_recall#Recall[Recall] calculated at thresholds: 0.5 and 0.7
<7> {wikipedia}/Confusion_matrix[Confusion matrix] calculated at threshold 0.5
<8> {wikipedia}/Receiver_operating_characteristic#Area_under_the_curve[AuC ROC] calculated and the curve points returned
===== Classification
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-evaluation-classification]
--------------------------------------------------
<1> Constructing a new evaluation
<2> Name of the field in the index. Its value denotes the actual (i.e. ground truth) class the example belongs to.
<3> Name of the field in the index. Its value denotes the predicted (as per some ML algorithm) class of the example.
<4> The remaining parameters are the metrics to be calculated based on the two fields described above
<5> Accuracy
<6> Precision
<7> Recall
<8> Multiclass confusion matrix of size 3
===== Regression
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-evaluation-regression]
--------------------------------------------------
<1> Constructing a new evaluation
<2> Name of the field in the index. Its value denotes the actual (i.e. ground truth) value for an example.
<3> Name of the field in the index. Its value denotes the predicted (as per some ML algorithm) value for the example.
<4> The remaining parameters are the metrics to be calculated based on the two fields described above
<5> {wikipedia}/Mean_squared_error[Mean squared error]
<6> Mean squared logarithmic error
<7> {wikipedia}/Huber_loss#Pseudo-Huber_loss_function[Pseudo Huber loss]
<8> {wikipedia}/Coefficient_of_determination[R squared]
include::../execution.asciidoc[]
[id="{upid}-{api}-response"]
==== Response
The returned +{response}+ contains the requested evaluation metrics.
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-response]
--------------------------------------------------
<1> Fetching all the calculated metrics results
==== Results
===== Outlier detection
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-results-outlierdetection]
--------------------------------------------------
<1> Fetching precision metric by name
<2> Fetching precision at a given (0.4) threshold
<3> Fetching confusion matrix metric by name
<4> Fetching confusion matrix at a given (0.5) threshold
===== Classification
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-results-classification]
--------------------------------------------------
<1> Fetching accuracy metric by name
<2> Fetching the actual accuracy value
<3> Fetching precision metric by name
<4> Fetching the actual precision value
<5> Fetching recall metric by name
<6> Fetching the actual recall value
<7> Fetching multiclass confusion matrix metric by name
<8> Fetching the contents of the confusion matrix
<9> Fetching the number of classes that were not included in the matrix
===== Regression
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests-file}[{api}-results-regression]
--------------------------------------------------
<1> Fetching mean squared error metric by name
<2> Fetching the actual mean squared error value
<3> Fetching mean squared logarithmic error metric by name
<4> Fetching the actual mean squared logarithmic error value
<5> Fetching pseudo Huber loss metric by name
<6> Fetching the actual pseudo Huber loss value
<7> Fetching R squared metric by name
<8> Fetching the actual R squared value