🔎 Open source distributed and RESTful search engine.
Go to file
javanna 70fb67cc7b Build: targetCompatibility and sourceCompatibility are enough to make sure we compile client and client-sniffer with target and source 1.7 2016-06-14 23:16:38 +02:00
.github Uncomment pull request template body 2016-04-27 13:17:53 -04:00
buildSrc Build: add animalsniffer to detect usage of java8 apis in client and client-sniffer 2016-06-10 09:51:47 +02:00
client Build: targetCompatibility and sourceCompatibility are enough to make sure we compile client and client-sniffer with target and source 1.7 2016-06-14 23:16:38 +02:00
client-sniffer Build: targetCompatibility and sourceCompatibility are enough to make sure we compile client and client-sniffer with target and source 1.7 2016-06-14 23:16:38 +02:00
core Merge branch 'master' into feature/http_client 2016-06-10 11:18:21 +02:00
dev-tools Update usage of es.staging.plugins sysprop to pass build hash 2016-05-25 14:44:56 -07:00
distribution Remove explicit parallel new GC flag 2016-06-07 12:05:38 -04:00
docs Add an index setting to limit the maximum number of slices allowed in a scroll request (default to 1024). 2016-06-10 09:43:32 +02:00
modules Merge pull request #18789 from rmuir/java9_localdate_you_just_had_to_do_this_didnt_you 2016-06-08 17:38:28 -04:00
plugins ingest: Upgrade geoip processor's dependencies and database files 2016-06-08 18:41:48 +02:00
qa Packaging tests: ingest-grok is now ingest-common 2016-06-08 14:03:48 -04:00
rest-api-spec Add an index setting to limit the maximum number of slices allowed in a scroll request (default to 1024). 2016-06-10 09:43:32 +02:00
test Merge branch 'master' into feature/http_client 2016-06-09 17:43:45 +02:00
.dir-locals.el reduce length of compile command 2016-02-03 11:10:51 -07:00
.editorconfig Add simple EditorConfig 2015-11-30 14:47:03 +01:00
.gitignore Build: use separate build directories for eclipse and intellij 2016-02-04 15:44:48 -08:00
.projectile Plugin: Remove multicast plugin 2016-01-29 18:41:31 -08:00
CONTRIBUTING.md Clarify squashing of pull request commits 2016-05-16 21:18:49 -04:00
GRADLE.CHEATSHEET add equivalent gradle commands 2015-10-30 23:07:40 -04:00
LICENSE.txt assemblies 2011-12-06 13:41:49 +02:00
NOTICE.txt Updated copyright years to include 2016 (#17808) 2016-04-18 12:39:23 +02:00
README.textile [docs] Modernize README.textile 2016-05-04 11:01:34 -04:00
TESTING.asciidoc Remove support for -Des.* system properties in integration tests 2016-05-23 19:38:21 -04:00
Vagrantfile Cutover to elastic Vagrant boxes 2016-03-20 22:11:30 -04:00
build.gradle move client sniffer to its own project 2016-06-03 16:01:07 +02:00
gradle.properties Gradle daemon is a demon 2015-11-25 09:33:12 -05:00
migrate.sh Bump Elasticsearch version to 5.0.0-SNAPSHOT 2016-03-01 17:03:47 -05:00
settings.gradle Merge branch 'master' into feature/http_client 2016-06-09 17:43:45 +02:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant with Multi Types.
** Support for more than one index.
** Support for more than one type per index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined per type for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.
* Open Source under the Apache License, version 2 ("ALv2")

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's create a twitter user, and add some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/user/kimchy?pretty' -d '{ "name" : "Shay Banon" }'

curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/user/kimchy?pretty=true'
curl -XGET 'http://localhost:9200/twitter/tweet/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/tweet/2?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/tweet/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/tweet/_search?pretty=true' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the user as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @postDate@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Maan, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices, as well as multiple types per index. In the previous example we used an index called @twitter@, with two types, @user@ and @tweet@.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/info/1?pretty' -d '{ "name" : "Shay Banon" }'

curl -XPUT 'http://localhost:9200/kimchy/tweet/1?pretty' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/tweet/2?pretty' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index, with two types, @info@ and @tweet@. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -d '
{
    "index" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replica. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website.

h3. Building from Source

Elasticsearch uses "Gradle":http://gradle.org for its build system. You'll need to have a modern version of Gradle installed - 2.8 should do.

In order to create a distribution, simply run the @gradle build@ command in the cloned directory.

The distribution for each project will be created under the @target/releases@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about
running the Elasticsearch test suite.

h3. Upgrading from Elasticsearch 1.x?

In order to ensure a smooth upgrade process from earlier versions of
Elasticsearch (1.x), it is required to perform a full cluster restart. Please
see the "setup reference":
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html
for more details on the upgrade process.

h1. License

<pre>
This software is licensed under the Apache License, version 2 ("ALv2"), quoted below.

Copyright 2009-2016 Elasticsearch <https://www.elastic.co>

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.
</pre>