OpenSearch/docs/java-rest/high-level/indices/analyze.asciidoc

97 lines
3.6 KiB
Plaintext

--
:api: analyze
:request: AnalyzeRequest
:response: AnalyzeResponse
--
[id="{upid}-{api}"]
=== Analyze API
[id="{upid}-{api}-request"]
==== Analyze Request
An +{request}+ contains the text to analyze, and one of several options to
specify how the analysis should be performed.
The simplest version uses a built-in analyzer:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-builtin-request]
---------------------------------------------------
<1> A built-in analyzer
<2> The text to include. Multiple strings are treated as a multi-valued field
You can configure a custom analyzer:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-custom-request]
---------------------------------------------------
<1> Configuration for a custom tokenfilter
<2> Configure the tokenizer
<3> Configure char filters
<4> Add a built-in tokenfilter
<5> Add the custom tokenfilter
You can also build a custom normalizer, by including only charfilters and
tokenfilters:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-custom-normalizer-request]
---------------------------------------------------
You can analyze text using an analyzer defined in an existing index:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-index-request]
---------------------------------------------------
<1> The index containing the mappings
<2> The analyzer defined on this index to use
Or you can use a normalizer:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-index-normalizer-request]
---------------------------------------------------
<1> The index containing the mappings
<2> The normalizer defined on this index to use
You can analyze text using the mappings for a particular field in an index:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-field-request]
---------------------------------------------------
==== Optional arguments
The following arguments can also optionally be provided:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-request-explain]
---------------------------------------------------
<1> Setting `explain` to true will add further details to the response
<2> Setting `attributes` allows you to return only token attributes that you are
interested in
include::../execution.asciidoc[]
[id="{upid}-{api}-response"]
==== Analyze Response
The returned +{response}+ allows you to retrieve details of the analysis as
follows:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-response-tokens]
---------------------------------------------------
<1> `AnalyzeToken` holds information about the individual tokens produced by analysis
If `explain` was set to `true`, then information is instead returned from the `detail()`
method:
["source","java",subs="attributes,callouts,macros"]
---------------------------------------------------
include-tagged::{doc-tests-file}[{api}-response-detail]
---------------------------------------------------
<1> `DetailAnalyzeResponse` holds more detailed information about tokens produced by
the various substeps in the analysis chain.