OpenSearch/docs/reference/analysis/analyzers/standard-analyzer.asciidoc

303 lines
6.3 KiB
Plaintext

[[analysis-standard-analyzer]]
=== Standard analyzer
++++
<titleabbrev>Standard</titleabbrev>
++++
The `standard` analyzer is the default analyzer which is used if none is
specified. It provides grammar based tokenization (based on the Unicode Text
Segmentation algorithm, as specified in
http://unicode.org/reports/tr29/[Unicode Standard Annex #29]) and works well
for most languages.
[float]
=== Example output
[source,console]
---------------------------
POST _analyze
{
"analyzer": "standard",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
---------------------------
/////////////////////
[source,console-result]
----------------------------
{
"tokens": [
{
"token": "the",
"start_offset": 0,
"end_offset": 3,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "2",
"start_offset": 4,
"end_offset": 5,
"type": "<NUM>",
"position": 1
},
{
"token": "quick",
"start_offset": 6,
"end_offset": 11,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "brown",
"start_offset": 12,
"end_offset": 17,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "foxes",
"start_offset": 18,
"end_offset": 23,
"type": "<ALPHANUM>",
"position": 4
},
{
"token": "jumped",
"start_offset": 24,
"end_offset": 30,
"type": "<ALPHANUM>",
"position": 5
},
{
"token": "over",
"start_offset": 31,
"end_offset": 35,
"type": "<ALPHANUM>",
"position": 6
},
{
"token": "the",
"start_offset": 36,
"end_offset": 39,
"type": "<ALPHANUM>",
"position": 7
},
{
"token": "lazy",
"start_offset": 40,
"end_offset": 44,
"type": "<ALPHANUM>",
"position": 8
},
{
"token": "dog's",
"start_offset": 45,
"end_offset": 50,
"type": "<ALPHANUM>",
"position": 9
},
{
"token": "bone",
"start_offset": 51,
"end_offset": 55,
"type": "<ALPHANUM>",
"position": 10
}
]
}
----------------------------
/////////////////////
The above sentence would produce the following terms:
[source,text]
---------------------------
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]
---------------------------
[float]
=== Configuration
The `standard` analyzer accepts the following parameters:
[horizontal]
`max_token_length`::
The maximum token length. If a token is seen that exceeds this length then
it is split at `max_token_length` intervals. Defaults to `255`.
`stopwords`::
A pre-defined stop words list like `_english_` or an array containing a
list of stop words. Defaults to `_none_`.
`stopwords_path`::
The path to a file containing stop words.
See the <<analysis-stop-tokenfilter,Stop Token Filter>> for more information
about stop word configuration.
[float]
=== Example configuration
In this example, we configure the `standard` analyzer to have a
`max_token_length` of 5 (for demonstration purposes), and to use the
pre-defined list of English stop words:
[source,console]
----------------------------
PUT my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_english_analyzer": {
"type": "standard",
"max_token_length": 5,
"stopwords": "_english_"
}
}
}
}
}
POST my_index/_analyze
{
"analyzer": "my_english_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
----------------------------
/////////////////////
[source,console-result]
----------------------------
{
"tokens": [
{
"token": "2",
"start_offset": 4,
"end_offset": 5,
"type": "<NUM>",
"position": 1
},
{
"token": "quick",
"start_offset": 6,
"end_offset": 11,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "brown",
"start_offset": 12,
"end_offset": 17,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "foxes",
"start_offset": 18,
"end_offset": 23,
"type": "<ALPHANUM>",
"position": 4
},
{
"token": "jumpe",
"start_offset": 24,
"end_offset": 29,
"type": "<ALPHANUM>",
"position": 5
},
{
"token": "d",
"start_offset": 29,
"end_offset": 30,
"type": "<ALPHANUM>",
"position": 6
},
{
"token": "over",
"start_offset": 31,
"end_offset": 35,
"type": "<ALPHANUM>",
"position": 7
},
{
"token": "lazy",
"start_offset": 40,
"end_offset": 44,
"type": "<ALPHANUM>",
"position": 9
},
{
"token": "dog's",
"start_offset": 45,
"end_offset": 50,
"type": "<ALPHANUM>",
"position": 10
},
{
"token": "bone",
"start_offset": 51,
"end_offset": 55,
"type": "<ALPHANUM>",
"position": 11
}
]
}
----------------------------
/////////////////////
The above example produces the following terms:
[source,text]
---------------------------
[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]
---------------------------
[float]
=== Definition
The `standard` analyzer consists of:
Tokenizer::
* <<analysis-standard-tokenizer,Standard Tokenizer>>
Token Filters::
* <<analysis-lowercase-tokenfilter,Lower Case Token Filter>>
* <<analysis-stop-tokenfilter,Stop Token Filter>> (disabled by default)
If you need to customize the `standard` analyzer beyond the configuration
parameters then you need to recreate it as a `custom` analyzer and modify
it, usually by adding token filters. This would recreate the built-in
`standard` analyzer and you can use it as a starting point:
[source,console]
----------------------------------------------------
PUT /standard_example
{
"settings": {
"analysis": {
"analyzer": {
"rebuilt_standard": {
"tokenizer": "standard",
"filter": [
"lowercase" <1>
]
}
}
}
}
}
----------------------------------------------------
// TEST[s/\n$/\nstartyaml\n - compare_analyzers: {index: standard_example, first: standard, second: rebuilt_standard}\nendyaml\n/]
<1> You'd add any token filters after `lowercase`.