OpenSearch/docs/reference/ml/df-analytics/apis/analysisobjects.asciidoc

218 lines
6.4 KiB
Plaintext

[role="xpack"]
[testenv="platinum"]
[[ml-dfa-analysis-objects]]
=== Analysis configuration objects
{dfanalytics-cap} resources contain `analysis` objects. For example, when you
create a {dfanalytics-job}, you must define the type of analysis it performs.
This page lists all the available parameters that you can use in the `analysis`
object grouped by {dfanalytics} types.
[discrete]
[[oldetection-resources]]
==== {oldetection-cap} configuration objects
An `outlier_detection` configuration object has the following properties:
`compute_feature_influence`::
(Optional, boolean)
include::{docdir}/ml/ml-shared.asciidoc[tag=compute-feature-influence]
`feature_influence_threshold`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold]
`method`::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=method]
`n_neighbors`::
(Optional, integer)
include::{docdir}/ml/ml-shared.asciidoc[tag=n-neighbors]
`outlier_fraction`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=outlier-fraction]
`standardization_enabled`::
(Optional, boolean)
include::{docdir}/ml/ml-shared.asciidoc[tag=standardization-enabled]
[discrete]
[[regression-resources]]
==== {regression-cap} configuration objects
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/house_price_regression_analysis
{
"source": {
"index": "houses_sold_last_10_yrs" <1>
},
"dest": {
"index": "house_price_predictions" <2>
},
"analysis":
{
"regression": { <3>
"dependent_variable": "price" <4>
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
<1> Training data is taken from source index `houses_sold_last_10_yrs`.
<2> Analysis results will be output to destination index
`house_price_predictions`.
<3> The regression analysis configuration object.
<4> Regression analysis will use field `price` to train on. As no other
parameters have been specified it will train on 100% of eligible data, store its
prediction in destination index field `price_prediction` and use in-built
hyperparameter optimization to give minimum validation errors.
[float]
[[regression-resources-standard]]
===== Standard parameters
`dependent_variable`::
(Required, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
+
--
The data type of the field must be numeric.
--
`prediction_field_name`::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
`training_percent`::
(Optional, integer)
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
`randomize_seed`::
(Optional, long)
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
[float]
[[regression-resources-advanced]]
===== Advanced parameters
Advanced parameters are for fine-tuning {reganalysis}. They are set
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
to give minimum validation error. It is highly recommended to use the default
values unless you fully understand the function of these parameters. If these
parameters are not supplied, their values are automatically tuned to give
minimum validation error.
`eta`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
`feature_bag_fraction`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
`maximum_number_trees`::
(Optional, integer)
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees]
`gamma`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
`lambda`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
[discrete]
[[classification-resources]]
==== {classification-cap} configuration objects
[float]
[[classification-resources-standard]]
===== Standard parameters
`dependent_variable`::
(Required, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
+
--
The data type of the field must be numeric (`integer`, `short`, `long`, `byte`),
categorical (`ip`, `keyword`, `text`), or boolean.
--
`num_top_classes`::
(Optional, integer)
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-classes]
`prediction_field_name`::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
`training_percent`::
(Optional, integer)
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
`randomize_seed`::
(Optional, long)
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
[float]
[[classification-resources-advanced]]
===== Advanced parameters
Advanced parameters are for fine-tuning {classanalysis}. They are set
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
to give minimum validation error. It is highly recommended to use the default
values unless you fully understand the function of these parameters. If these
parameters are not supplied, their values are automatically tuned to give
minimum validation error.
`eta`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
`feature_bag_fraction`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
`maximum_number_trees`::
(Optional, integer)
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees]
`gamma`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
`lambda`::
(Optional, double)
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
[discrete]
[[ml-hyperparam-optimization]]
==== Hyperparameter optimization
If you don't supply {regression} or {classification} parameters, hyperparameter
optimization will be performed by default to set a value for the undefined
parameters. The starting point is calculated for data dependent parameters by
examining the loss on the training data. Subject to the size constraint, this
operation provides an upper bound on the improvement in validation loss.
A fixed number of rounds is used for optimization which depends on the number of
parameters being optimized. The optimization starts with random search, then
Bayesian optimization is performed that is targeting maximum expected
improvement. If you override any parameters, then the optimization will
calculate the value of the remaining parameters accordingly and use the value
you provided for the overridden parameter. The number of rounds are reduced
respectively. The validation error is estimated in each round by using 4-fold
cross validation.