OpenSearch/docs/reference/aggregations/metrics/percentile-rank-aggregation...

239 lines
7.8 KiB
Plaintext

[[search-aggregations-metrics-percentile-rank-aggregation]]
=== Percentile Ranks Aggregation
A `multi-value` metrics aggregation that calculates one or more percentile ranks
over numeric values extracted from the aggregated documents. These values can be
generated by a provided script or extracted from specific numeric or
<<histogram,histogram fields>> in the documents.
[NOTE]
==================================================
Please see <<search-aggregations-metrics-percentile-aggregation-approximation>>
and <<search-aggregations-metrics-percentile-aggregation-compression>> for advice
regarding approximation and memory use of the percentile ranks aggregation
==================================================
Percentile rank show the percentage of observed values which are below certain
value. For example, if a value is greater than or equal to 95% of the observed values
it is said to be at the 95th percentile rank.
Assume your data consists of website load times. You may have a service agreement that
95% of page loads complete within 500ms and 99% of page loads complete within 600ms.
Let's look at a range of percentiles representing load time:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs" : {
"load_time_ranks" : {
"percentile_ranks" : {
"field" : "load_time", <1>
"values" : [500, 600]
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> The field `load_time` must be a numeric field
The response will look like this:
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"load_time_ranks": {
"values" : {
"500.0": 90.01,
"600.0": 100.0
}
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
// TESTRESPONSE[s/"500.0": 90.01/"500.0": 55.00000000000001/]
// TESTRESPONSE[s/"600.0": 100.0/"600.0": 64.0/]
From this information you can determine you are hitting the 99% load time target but not quite
hitting the 95% load time target
==== Keyed Response
By default the `keyed` flag is set to `true` associates a unique string key with each bucket and returns the ranges as a hash rather than an array. Setting the `keyed` flag to `false` will disable this behavior:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs": {
"load_time_ranks": {
"percentile_ranks": {
"field": "load_time",
"values": [500, 600],
"keyed": false
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
Response:
[source,console-result]
--------------------------------------------------
{
...
"aggregations": {
"load_time_ranks": {
"values": [
{
"key": 500.0,
"value": 90.01
},
{
"key": 600.0,
"value": 100.0
}
]
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
// TESTRESPONSE[s/"value": 90.01/"value": 55.00000000000001/]
// TESTRESPONSE[s/"value": 100.0/"value": 64.0/]
==== Script
The percentile rank metric supports scripting. For example, if our load times
are in milliseconds but we want to specify values in seconds, we could use
a script to convert them on-the-fly:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs" : {
"load_time_ranks" : {
"percentile_ranks" : {
"values" : [500, 600],
"script" : {
"lang": "painless",
"source": "doc['load_time'].value / params.timeUnit", <1>
"params" : {
"timeUnit" : 1000 <2>
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> The `field` parameter is replaced with a `script` parameter, which uses the
script to generate values which percentile ranks are calculated on
<2> Scripting supports parameterized input just like any other script
This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs" : {
"load_time_ranks" : {
"percentile_ranks" : {
"values" : [500, 600],
"script" : {
"id": "my_script",
"params": {
"field": "load_time"
}
}
}
}
}
}
--------------------------------------------------
// TEST[setup:latency,stored_example_script]
==== HDR Histogram
NOTE: This setting exposes the internal implementation of HDR Histogram and the syntax may change in the future.
https://github.com/HdrHistogram/HdrHistogram[HDR Histogram] (High Dynamic Range Histogram) is an alternative implementation
that can be useful when calculating percentile ranks for latency measurements as it can be faster than the t-digest implementation
with the trade-off of a larger memory footprint. This implementation maintains a fixed worse-case percentage error (specified as a
number of significant digits). This means that if data is recorded with values from 1 microsecond up to 1 hour (3,600,000,000
microseconds) in a histogram set to 3 significant digits, it will maintain a value resolution of 1 microsecond for values up to
1 millisecond and 3.6 seconds (or better) for the maximum tracked value (1 hour).
The HDR Histogram can be used by specifying the `hdr` object in the request:
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs" : {
"load_time_ranks" : {
"percentile_ranks" : {
"field" : "load_time",
"values" : [500, 600],
"hdr": { <1>
"number_of_significant_value_digits" : 3 <2>
}
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> `hdr` object indicates that HDR Histogram should be used to calculate the percentiles and specific settings for this algorithm can be specified inside the object
<2> `number_of_significant_value_digits` specifies the resolution of values for the histogram in number of significant digits
The HDRHistogram only supports positive values and will error if it is passed a negative value. It is also not a good idea to use
the HDRHistogram if the range of values is unknown as this could lead to high memory usage.
==== Missing value
The `missing` parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they
had a value.
[source,console]
--------------------------------------------------
GET latency/_search
{
"size": 0,
"aggs" : {
"load_time_ranks" : {
"percentile_ranks" : {
"field" : "load_time",
"values" : [500, 600],
"missing": 10 <1>
}
}
}
}
--------------------------------------------------
// TEST[setup:latency]
<1> Documents without a value in the `load_time` field will fall into the same bucket as documents that have the value `10`.