🔎 Open source distributed and RESTful search engine.
Go to file
Nik Everett 912fbb2211
Reindex: Fold "from old" tests into reindex module (#30142)
This folds the `:qa:reindex-from-old` project into the `:modules:reindex`
project. This should speed up the build marginally by removing a single
clsuter start up at the cost of having to wait for old versions of
Elasticsearch to start up when checking reindex's integration tests.
Those don't take that long so this feels worth it.
2018-04-27 14:04:37 -04:00
.ci Java versions for ci (#29320) 2018-04-02 14:24:25 -04:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Honor RUNTIME_JAVA_HOME for benchmarks (#28962) 2018-03-12 07:58:07 +01:00
buildSrc [test] include oss tar in packaging tests (#30155) 2018-04-26 06:58:41 -07:00
client Add support for field capabilities to the high-level REST client. (#29664) 2018-04-26 09:50:37 -07:00
dev-tools Require HTTP::Tiny 0.070 for release notes script 2018-03-20 16:57:36 +01:00
distribution Build: Fix deb version to use tilde with prerelease versions (#29000) 2018-04-26 11:51:48 -07:00
docs [DOCS] Added 'on a single shard' to description of max_thread_count. Closes 28518 (#29686) 2018-04-27 09:29:27 -07:00
gradle/wrapper Upgrade to Gradle 4.7 (#29644) 2018-04-24 19:00:29 -04:00
libs Fix dependency checks on libs when generating Eclipse configuration. (#29550) 2018-04-17 17:11:12 +02:00
licenses Reorganize license files 2018-04-20 15:33:59 -07:00
modules Reindex: Fold "from old" tests into reindex module (#30142) 2018-04-27 14:04:37 -04:00
plugins Move repository-s3 fixture tests to QA test project (#29372) 2018-04-27 16:49:06 +02:00
qa Reindex: Fold "from old" tests into reindex module (#30142) 2018-04-27 14:04:37 -04:00
rest-api-spec REST: Remove GET support for clear cache indices (#29525) 2018-04-27 08:41:36 +02:00
server Convert FieldCapabilitiesResponse to a ToXContentObject. (#30182) 2018-04-27 09:47:11 -07:00
test test: also assert deprecation warning after clusters have been closed. 2018-04-19 09:20:04 +02:00
x-pack [TEST] Redirect links to new locations (#30179) 2018-04-27 09:24:46 -07:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.editorconfig Add simple EditorConfig 2015-11-30 14:47:03 +01:00
.gitattributes Add a CHANGELOG file for release notes. (#29450) 2018-04-18 07:42:05 -07:00
.gitignore Cleanup .gitignore (#30145) 2018-04-25 22:11:40 -04:00
CONTRIBUTING.md add copyright/scope configuration for intellij to Contributing Guide (#29688) 2018-04-26 08:19:17 -07:00
LICENSE.txt Reorganize license files 2018-04-20 15:33:59 -07:00
NOTICE.txt [Docs] Update Copyright notices to 2018 (#29404) 2018-04-06 16:21:20 +02:00
README.textile Remove license information from README.textile (#29198) 2018-03-22 10:20:18 -04:00
TESTING.asciidoc Enable skipping fetching latest for BWC builds (#29497) 2018-04-13 09:31:06 -04:00
Vagrantfile [test] packaging: gradle tasks for groovy tests (#29046) 2018-03-26 13:43:09 -07:00
build.gradle Build: Assert jar LICENSE and NOTICE files match 2018-04-25 19:53:24 -04:00
gradle.properties Increase Gradle heap space to 1536m 2017-12-19 21:45:43 -05:00
gradlew Introduce Gradle wrapper 2018-01-04 16:36:13 -05:00
gradlew.bat Introduce Gradle wrapper 2018-01-04 16:36:13 -05:00
settings.gradle Build: Split distributions into oss and default 2018-04-20 15:33:57 -07:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/3?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @post_date@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "index" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system.

In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite.

h3. Upgrading from Elasticsearch 1.x?

In order to ensure a smooth upgrade process from earlier versions of
Elasticsearch (1.x), it is required to perform a full cluster restart. Please
see the "setup reference":
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html
for more details on the upgrade process.