139 lines
4.1 KiB
Plaintext
139 lines
4.1 KiB
Plaintext
[[search-aggregations-pipeline-extended-stats-bucket-aggregation]]
|
|
=== Extended stats bucket aggregation
|
|
++++
|
|
<titleabbrev>Extended stats bucket</titleabbrev>
|
|
++++
|
|
|
|
A sibling pipeline aggregation which calculates a variety of stats across all bucket of a specified metric in a sibling aggregation.
|
|
The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
|
|
|
|
This aggregation provides a few more statistics (sum of squares, standard deviation, etc) compared to the `stats_bucket` aggregation.
|
|
|
|
==== Syntax
|
|
|
|
A `extended_stats_bucket` aggregation looks like this in isolation:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"extended_stats_bucket": {
|
|
"buckets_path": "the_sum"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[extended-stats-bucket-params]]
|
|
.`extended_stats_bucket` Parameters
|
|
[options="header"]
|
|
|===
|
|
|Parameter Name |Description |Required |Default Value
|
|
|`buckets_path` |The path to the buckets we wish to calculate stats for (see <<buckets-path-syntax>> for more
|
|
details) |Required |
|
|
|`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
|
|
details)|Optional | `skip`
|
|
|`format` |format to apply to the output value of this aggregation |Optional | `null`
|
|
|`sigma` |The number of standard deviations above/below the mean to display |Optional | 2
|
|
|===
|
|
|
|
The following snippet calculates the extended stats for monthly `sales` bucket:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
POST /sales/_search
|
|
{
|
|
"size": 0,
|
|
"aggs": {
|
|
"sales_per_month": {
|
|
"date_histogram": {
|
|
"field": "date",
|
|
"calendar_interval": "month"
|
|
},
|
|
"aggs": {
|
|
"sales": {
|
|
"sum": {
|
|
"field": "price"
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"stats_monthly_sales": {
|
|
"extended_stats_bucket": {
|
|
"buckets_path": "sales_per_month>sales" <1>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[setup:sales]
|
|
|
|
<1> `bucket_paths` instructs this `extended_stats_bucket` aggregation that we want the calculate stats for the `sales` aggregation in the
|
|
`sales_per_month` date histogram.
|
|
|
|
And the following may be the response:
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
"took": 11,
|
|
"timed_out": false,
|
|
"_shards": ...,
|
|
"hits": ...,
|
|
"aggregations": {
|
|
"sales_per_month": {
|
|
"buckets": [
|
|
{
|
|
"key_as_string": "2015/01/01 00:00:00",
|
|
"key": 1420070400000,
|
|
"doc_count": 3,
|
|
"sales": {
|
|
"value": 550.0
|
|
}
|
|
},
|
|
{
|
|
"key_as_string": "2015/02/01 00:00:00",
|
|
"key": 1422748800000,
|
|
"doc_count": 2,
|
|
"sales": {
|
|
"value": 60.0
|
|
}
|
|
},
|
|
{
|
|
"key_as_string": "2015/03/01 00:00:00",
|
|
"key": 1425168000000,
|
|
"doc_count": 2,
|
|
"sales": {
|
|
"value": 375.0
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"stats_monthly_sales": {
|
|
"count": 3,
|
|
"min": 60.0,
|
|
"max": 550.0,
|
|
"avg": 328.3333333333333,
|
|
"sum": 985.0,
|
|
"sum_of_squares": 446725.0,
|
|
"variance": 41105.55555555556,
|
|
"variance_population": 41105.55555555556,
|
|
"variance_sampling": 61658.33333333334,
|
|
"std_deviation": 202.74505063146563,
|
|
"std_deviation_population": 202.74505063146563,
|
|
"std_deviation_sampling": 248.3109609609156,
|
|
"std_deviation_bounds": {
|
|
"upper": 733.8234345962646,
|
|
"lower": -77.15676792959795,
|
|
"upper_population" : 733.8234345962646,
|
|
"lower_population" : -77.15676792959795,
|
|
"upper_sampling" : 824.9552552551645,
|
|
"lower_sampling" : -168.28858858849787
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
|
|
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
|
|
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]
|