OpenSearch/docs/reference/aggregations/pipeline/inference-bucket-aggregatio...

186 lines
5.3 KiB
Plaintext

[role="xpack"]
[testenv="basic"]
[[search-aggregations-pipeline-inference-bucket-aggregation]]
=== {infer-cap} bucket aggregation
++++
<titleabbrev>{infer-cap} bucket</titleabbrev>
++++
experimental::[]
A parent pipeline aggregation which loads a pre-trained model and performs
{infer} on the collated result fields from the parent bucket aggregation.
To use the {infer} bucket aggregation, you need to have the same security
privileges that are required for using the <<get-trained-models>>.
[[inference-bucket-agg-syntax]]
==== Syntax
A `inference` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
"inference": {
"model_id": "a_model_for_inference", <1>
"inference_config": { <2>
"regression_config": {
"num_top_feature_importance_values": 2
}
},
"buckets_path": {
"avg_cost": "avg_agg", <3>
"max_cost": "max_agg"
}
}
}
--------------------------------------------------
// NOTCONSOLE
<1> The ID of model to use.
<2> The optional inference config which overrides the model's default settings
<3> Map the value of `avg_agg` to the model's input field `avg_cost`
[[inference-bucket-params]]
.`inference` Parameters
[options="header"]
|===
|Parameter Name |Description |Required |Default Value
| `model_id` | The ID of the model to load and infer against | Required | -
| `inference_config` | Contains the inference type and its options. There are two types: <<inference-agg-regression-opt,`regression`>> and <<inference-agg-classification-opt,`classification`>> | Optional | -
| `buckets_path` | Defines the paths to the input aggregations and maps the aggregation names to the field names expected by the model.
See <<buckets-path-syntax>> for more details | Required | -
|===
==== Configuration options for {infer} models
The `inference_config` setting is optional and usually isn't required as the
pre-trained models come equipped with sensible defaults. In the context of
aggregations some options can overridden for each of the 2 types of model.
[discrete]
[[inference-agg-regression-opt]]
===== Configuration options for {regression} models
`num_top_feature_importance_values`::
(Optional, integer)
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-regression-num-top-feature-importance-values]
[discrete]
[[inference-agg-classification-opt]]
===== Configuration options for {classification} models
`num_top_classes`::
(Optional, integer)
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-classes]
`num_top_feature_importance_values`::
(Optional, integer)
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-feature-importance-values]
`prediction_field_type`::
(Optional, string)
include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-prediction-field-type]
[[inference-bucket-agg-example]]
==== Example
The following snippet aggregates a web log by `client_ip` and extracts a number
of features via metric and bucket sub-aggregations as input to the {infer}
aggregation configured with a model trained to identify suspicious client IPs:
[source,console]
-------------------------------------------------
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"client_ip": { <1>
"composite": {
"sources": [
{
"client_ip": {
"terms": {
"field": "clientip"
}
}
}
]
},
"aggs": { <2>
"url_dc": {
"cardinality": {
"field": "url.keyword"
}
},
"bytes_sum": {
"sum": {
"field": "bytes"
}
},
"geo_src_dc": {
"cardinality": {
"field": "geo.src"
}
},
"geo_dest_dc": {
"cardinality": {
"field": "geo.dest"
}
},
"responses_total": {
"value_count": {
"field": "timestamp"
}
},
"success": {
"filter": {
"term": {
"response": "200"
}
}
},
"error404": {
"filter": {
"term": {
"response": "404"
}
}
},
"error503": {
"filter": {
"term": {
"response": "503"
}
}
},
"malicious_client_ip": { <3>
"inference": {
"model_id": "malicious_clients_model",
"buckets_path": {
"response_count": "responses_total",
"url_dc": "url_dc",
"bytes_sum": "bytes_sum",
"geo_src_dc": "geo_src_dc",
"geo_dest_dc": "geo_dest_dc",
"success": "success._count",
"error404": "error404._count",
"error503": "error503._count"
}
}
}
}
}
}
}
-------------------------------------------------
// TEST[skip:setup kibana sample data]
<1> A composite bucket aggregation that aggregates the data by `client_ip`.
<2> A series of metrics and bucket sub-aggregations.
<3> {infer-cap} bucket aggregation that contains the model ID and maps the
aggregation names to the model's input fields.