80 lines
2.2 KiB
Plaintext
80 lines
2.2 KiB
Plaintext
[[query-dsl-fuzzy-query]]
|
|
=== Fuzzy Query
|
|
|
|
A fuzzy based query that uses similarity based on Levenshtein (edit
|
|
distance) algorithm.
|
|
|
|
Warning: this query is not very scalable with its default prefix length
|
|
of 0 - in this case, *every* term will be enumerated and cause an edit
|
|
score calculation or `max_expansions` is not set.
|
|
|
|
Here is a simple example:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"fuzzy" : { "user" : "ki" }
|
|
}
|
|
--------------------------------------------------
|
|
|
|
More complex settings can be set (the values here are the default
|
|
values):
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"fuzzy" : {
|
|
"user" : {
|
|
"value" : "ki",
|
|
"boost" : 1.0,
|
|
"min_similarity" : 0.5,
|
|
"prefix_length" : 0
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
The `max_expansions` parameter (unbounded by default) controls the
|
|
number of terms the fuzzy query will expand to.
|
|
|
|
[float]
|
|
==== Numeric / Date Fuzzy
|
|
|
|
`fuzzy` query on a numeric field will result in a range query "around"
|
|
the value using the `min_similarity` value. For example:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"fuzzy" : {
|
|
"price" : {
|
|
"value" : 12,
|
|
"min_similarity" : 2
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
Will result in a range query between 10 and 14. Same applies to dates,
|
|
with support for time format for the `min_similarity` field:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"fuzzy" : {
|
|
"created" : {
|
|
"value" : "2010-02-05T12:05:07",
|
|
"min_similarity" : "1d"
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
|
|
In the mapping, numeric and date types now allow to configure a
|
|
`fuzzy_factor` mapping value (defaults to 1), which will be used to
|
|
multiply the fuzzy value by it when used in a `query_string` type query.
|
|
For example, for dates, a fuzzy factor of "1d" will result in
|
|
multiplying whatever fuzzy value provided in the min_similarity by it.
|
|
Note, this is explicitly supported since query_string query only allowed
|
|
for similarity valued between 0.0 and 1.0.
|