d56e4bc7b1 | ||
---|---|---|
.. | ||
src/main | ||
README.md | ||
build.gradle |
README.md
Elasticsearch Microbenchmark Suite
This directory contains the microbenchmark suite of Elasticsearch. It relies on JMH.
Purpose
We do not want to microbenchmark everything but the kitchen sink and should typically rely on our macrobenchmarks with Rally. Microbenchmarks are intended for performance-critical components to spot performance regressions. The microbenchmark suite is also handy for ad-hoc microbenchmarks but please remove them again before merging your PR.
Getting Started
Just run gradle :benchmarks:jmh
from the project root directory. It will build all microbenchmarks, execute them and print the result.
Running Microbenchmarks
Benchmarks are always run via Gradle with gradle :benchmarks:jmh
.
Running via an IDE is not supported as the results are meaningless (we have no control over the JVM running the benchmarks).
If you want to run a specific benchmark class, e.g. `org.elasticsearch.benchmark.MySampleBenchmark` or have any other special requirements
generate the uberjar with `gradle :benchmarks:jmhJar` and run the it directly with:
java -jar benchmarks/build/distributions/elasticsearch-benchmarks-*.jar
JMH supports lots of command line parameters. Add `-h` to the command above for more information about the available command line options.
## Adding Microbenchmarks
Before adding a new microbenchmark, make yourself familiar with the JMH API. You can check our existing microbenchmarks and also the
[JMH samples](http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/).
In contrast to tests, the actual name of the benchmark class is not relevant to JMH. However, stick to the naming convention and
end the class name of a benchmark with `Benchmark`. To have JMH execute a benchmark, annotate the respective methods with `@Benchmark`.
## Tips and Best Practices
To get realistic results, you should exercise care when running your benchmarks. Here are a few tips:
### Do
* Ensure that the system executing your microbenchmarks has as little load as possible and shutdown every process that can cause unnecessary
runtime jitter. Watch the `Error` column in the benchmark results to see the run-to-run variance.
* Ensure to run enough warmup iterations to get into a stable state. If you are unsure, don't change the defaults.
* Avoid CPU migrations by pinning your benchmarks to specific CPU cores. On Linux you can use `taskset`.
* Fix the CPU frequency to avoid Turbo Boost from kicking in and skewing your results. On Linux you can use `cpufreq-set` and the
`performance` CPU governor.
* Vary problem input size with `@Param`.
* Use the integrated profilers in JMH to dig deeper if benchmark results to not match your hypotheses:
** Run the generated uberjar directly and use `-prof gc` to check whether the garbage collector runs during a microbenchmarks and skews
your results. If so, try to force a GC between runs (`-gc true`).
** Use `-prof perf` or `-prof perfasm` (both only available on Linux) to see hotspots.
* Have your benchmarks peer-reviewed.
### Don't
* Blindly believe the numbers that your microbenchmark produces but verify them by measuring e.e. with `-prof perfasm`.
* Run run more threads than your number of CPU cores (in case you run multi-threaded microbenchmarks).
* Look only at the `Score` column and ignore `Error`. Instead take countermeasures to keep `Error` low / variance explainable.