OpenSearch/docs/reference/aggregations/pipeline/avg-bucket-aggregation.asciidoc
Zachary Tong 6ae6f57d39
[7.x Backport] Force selection of calendar or fixed intervals (#41906)
The date_histogram accepts an interval which can be either a calendar
interval (DST-aware, leap seconds, arbitrary length of months, etc) or
fixed interval (strict multiples of SI units). Unfortunately this is inferred
by first trying to parse as a calendar interval, then falling back to fixed
if that fails.

This leads to confusing arrangement where `1d` == calendar, but
`2d` == fixed.  And if you want a day of fixed time, you have to
specify `24h` (e.g. the next smallest unit).  This arrangement is very
error-prone for users.

This PR adds `calendar_interval` and `fixed_interval` parameters to any
code that uses intervals (date_histogram, rollup, composite, datafeed, etc).
Calendar only accepts calendar intervals, fixed accepts any combination of
units (meaning `1d` can be used to specify `24h` in fixed time), and both
are mutually exclusive.

The old interval behavior is deprecated and will throw a deprecation warning.
It is also mutually exclusive with the two new parameters. In the future the
old dual-purpose interval will be removed.

The change applies to both REST and java clients.
2019-05-20 12:07:29 -04:00

116 lines
3.0 KiB
Plaintext

[[search-aggregations-pipeline-avg-bucket-aggregation]]
=== Avg Bucket Aggregation
A sibling pipeline aggregation which calculates the (mean) average value of a specified metric in a sibling aggregation.
The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
[[avg-bucket-agg-syntax]]
==== Syntax
An `avg_bucket` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
"avg_bucket": {
"buckets_path": "the_sum"
}
}
--------------------------------------------------
// NOTCONSOLE
[[avg-bucket-params]]
.`avg_bucket` Parameters
[options="header"]
|===
|Parameter Name |Description |Required |Default Value
|`buckets_path` |The path to the buckets we wish to find the average for (see <<buckets-path-syntax>> for more
details) |Required |
|`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
details) |Optional |`skip`
|`format` |format to apply to the output value of this aggregation |Optional | `null`
|===
The following snippet calculates the average of the total monthly `sales`:
[source,js]
--------------------------------------------------
POST /_search
{
"size": 0,
"aggs": {
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"avg_monthly_sales": {
"avg_bucket": {
"buckets_path": "sales_per_month>sales" <1>
}
}
}
}
--------------------------------------------------
// CONSOLE
// TEST[setup:sales]
<1> `buckets_path` instructs this avg_bucket aggregation that we want the (mean) average value of the `sales` aggregation in the
`sales_per_month` date histogram.
And the following may be the response:
[source,js]
--------------------------------------------------
{
"took": 11,
"timed_out": false,
"_shards": ...,
"hits": ...,
"aggregations": {
"sales_per_month": {
"buckets": [
{
"key_as_string": "2015/01/01 00:00:00",
"key": 1420070400000,
"doc_count": 3,
"sales": {
"value": 550.0
}
},
{
"key_as_string": "2015/02/01 00:00:00",
"key": 1422748800000,
"doc_count": 2,
"sales": {
"value": 60.0
}
},
{
"key_as_string": "2015/03/01 00:00:00",
"key": 1425168000000,
"doc_count": 2,
"sales": {
"value": 375.0
}
}
]
},
"avg_monthly_sales": {
"value": 328.33333333333333
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]