aeaebddf4a
With this commit we configure our microbenchmarks project to use the configured RUNTIME_JAVA_HOME and to fallback on JAVA_HOME so this behavior is consistent with the rest of the Elasticsearch build. Closes #28961 |
||
---|---|---|
.. | ||
src/main | ||
README.md | ||
build.gradle |
README.md
Elasticsearch Microbenchmark Suite
This directory contains the microbenchmark suite of Elasticsearch. It relies on JMH.
Purpose
We do not want to microbenchmark everything but the kitchen sink and should typically rely on our macrobenchmarks with Rally. Microbenchmarks are intended to spot performance regressions in performance-critical components. The microbenchmark suite is also handy for ad-hoc microbenchmarks but please remove them again before merging your PR.
Getting Started
Just run gradle :benchmarks:jmh
from the project root directory. It will build all microbenchmarks, execute them and print the result.
Running Microbenchmarks
Benchmarks are always run via Gradle with gradle :benchmarks:jmh
.
Running via an IDE is not supported as the results are meaningless (we have no control over the JVM running the benchmarks).
If you want to run a specific benchmark class, e.g. org.elasticsearch.benchmark.MySampleBenchmark
or have special requirements
generate the uberjar with gradle :benchmarks:jmhJar
and run it directly with:
java -jar benchmarks/build/distributions/elasticsearch-benchmarks-*.jar
JMH supports lots of command line parameters. Add -h
to the command above to see the available command line options.
Adding Microbenchmarks
Before adding a new microbenchmark, make yourself familiar with the JMH API. You can check our existing microbenchmarks and also the JMH samples.
In contrast to tests, the actual name of the benchmark class is not relevant to JMH. However, stick to the naming convention and
end the class name of a benchmark with Benchmark
. To have JMH execute a benchmark, annotate the respective methods with @Benchmark
.
Tips and Best Practices
To get realistic results, you should exercise care when running benchmarks. Here are a few tips:
Do
- Ensure that the system executing your microbenchmarks has as little load as possible. Shutdown every process that can cause unnecessary
runtime jitter. Watch the
Error
column in the benchmark results to see the run-to-run variance. - Ensure to run enough warmup iterations to get the benchmark into a stable state. If you are unsure, don't change the defaults.
- Avoid CPU migrations by pinning your benchmarks to specific CPU cores. On Linux you can use
taskset
. - Fix the CPU frequency to avoid Turbo Boost from kicking in and skewing your results. On Linux you can use
cpufreq-set
and theperformance
CPU governor. - Vary the problem input size with
@Param
. - Use the integrated profilers in JMH to dig deeper if benchmark results to not match your hypotheses:
- Run the generated uberjar directly and use
-prof gc
to check whether the garbage collector runs during a microbenchmarks and skews your results. If so, try to force a GC between runs (-gc true
) but watch out for the caveats. - Use
-prof perf
or-prof perfasm
(both only available on Linux) to see hotspots.
- Run the generated uberjar directly and use
- Have your benchmarks peer-reviewed.
Don't
- Blindly believe the numbers that your microbenchmark produces but verify them by measuring e.g. with
-prof perfasm
. - Run more threads than your number of CPU cores (in case you run multi-threaded microbenchmarks).
- Look only at the
Score
column and ignoreError
. Instead take countermeasures to keepError
low / variance explainable.