🔎 Open source distributed and RESTful search engine.
Go to file
Martijn van Groningen a9ae52e78b
inner hits: Only access stored fields when needed
Stored fields were still being accessed for nested inner hits even if the _source was not requested.
This was done to figure out the id of the root document. However this is already known higher up the stack.
So instead this change adds the id to the nested search context, so that it is no longer required to be fetched via the stored fields.

In case the _source is large and no source is requested then hot threads like these ones would still appear:

```
100.3% (501.3ms out of 500ms) cpu usage by thread 'elasticsearch[AfXKKfq][search][T#6]'
     2/10 snapshots sharing following 22 elements
       org.apache.lucene.store.DataInput.skipBytes(DataInput.java:352)
       org.apache.lucene.codecs.compressing.CompressingStoredFieldsReader.skipField(CompressingStoredFieldsReader.java:246)
       org.apache.lucene.codecs.compressing.CompressingStoredFieldsReader.visitDocument(CompressingStoredFieldsReader.java:601)
       org.apache.lucene.index.CodecReader.document(CodecReader.java:88)
       org.apache.lucene.index.FilterLeafReader.document(FilterLeafReader.java:411)
       org.elasticsearch.search.fetch.FetchPhase.loadStoredFields(FetchPhase.java:347)
       org.elasticsearch.search.fetch.FetchPhase.createNestedSearchHit(FetchPhase.java:219)
       org.elasticsearch.search.fetch.FetchPhase.execute(FetchPhase.java:150)
       org.elasticsearch.search.fetch.subphase.InnerHitsFetchSubPhase.hitsExecute(InnerHitsFetchSubPhase.java:73)
       org.elasticsearch.search.fetch.FetchPhase.execute(FetchPhase.java:166)
       org.elasticsearch.search.fetch.subphase.InnerHitsFetchSubPhase.hitsExecute(InnerHitsFetchSubPhase.java:73)
       org.elasticsearch.search.fetch.FetchPhase.execute(FetchPhase.java:166)
       org.elasticsearch.search.SearchService.executeFetchPhase(SearchService.java:422)
```

and:

```
8/10 snapshots sharing following 27 elements
       org.apache.lucene.codecs.compressing.LZ4.decompress(LZ4.java:135)
       org.apache.lucene.codecs.compressing.CompressionMode$4.decompress(CompressionMode.java:138)
       org.apache.lucene.codecs.compressing.CompressingStoredFieldsReader$BlockState$1.fillBuffer(CompressingStoredFieldsReader.java:531)
       org.apache.lucene.codecs.compressing.CompressingStoredFieldsReader$BlockState$1.readBytes(CompressingStoredFieldsReader.java:550)
       org.apache.lucene.store.DataInput.readBytes(DataInput.java:87)
       org.apache.lucene.store.DataInput.skipBytes(DataInput.java:350)
       org.apache.lucene.codecs.compressing.CompressingStoredFieldsReader.skipField(CompressingStoredFieldsReader.java:246)
       org.apache.lucene.codecs.compressing.CompressingStoredFieldsReader.visitDocument(CompressingStoredFieldsReader.java:601)
       org.apache.lucene.index.CodecReader.document(CodecReader.java:88)
       org.apache.lucene.index.FilterLeafReader.document(FilterLeafReader.java:411)
       org.elasticsearch.search.fetch.FetchPhase.loadStoredFields(FetchPhase.java:347)
       org.elasticsearch.search.fetch.FetchPhase.createNestedSearchHit(FetchPhase.java:219)
       org.elasticsearch.search.fetch.FetchPhase.execute(FetchPhase.java:150)
       org.elasticsearch.search.fetch.subphase.InnerHitsFetchSubPhase.hitsExecute(InnerHitsFetchSubPhase.java:73)
       org.elasticsearch.search.fetch.FetchPhase.execute(FetchPhase.java:166)
       org.elasticsearch.search.fetch.subphase.InnerHitsFetchSubPhase.hitsExecute(InnerHitsFetchSubPhase.java:73)
       org.elasticsearch.search.fetch.FetchPhase.execute(FetchPhase.java:166)
       org.elasticsearch.search.SearchService.executeFetchPhase(SearchService.java:422)
```
2017-07-25 12:10:59 +02:00
.github Rewrote the github issue template to be shorter and more likely to be read (#24486) 2017-05-04 17:41:21 +02:00
benchmarks Remove assemble from build task when assemble removed 2017-06-16 17:19:14 -04:00
buildSrc inner hits: Only access stored fields when needed 2017-07-25 12:10:59 +02:00
client Shade external dependencies in the rest client jar 2017-07-24 12:55:43 -05:00
core inner hits: Only access stored fields when needed 2017-07-25 12:10:59 +02:00
dev-tools Added a script to change the labels on github issues which match the search (#25828) 2017-07-21 14:41:16 +02:00
distribution Shade external dependencies in the rest client jar 2017-07-24 12:55:43 -05:00
docs [Docs] remove reference to the deprecated in the docs 2017-07-25 09:41:53 +02:00
modules Shade external dependencies in the rest client jar 2017-07-24 12:55:43 -05:00
plugins Upgrade to lucene-7.0.0-snapshot-00142c9. (#25641) 2017-07-11 13:58:55 +02:00
qa Shade external dependencies in the rest client jar 2017-07-24 12:55:43 -05:00
rest-api-spec [TEST] Move version skip to setup in Indices.GetMapping#70_legacy_multi_type (#25816) 2017-07-21 11:53:48 -04:00
test Shade external dependencies in the rest client jar 2017-07-24 12:55:43 -05:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.editorconfig Add simple EditorConfig 2015-11-30 14:47:03 +01:00
.gitignore Add BWC layer to seq no infra and enable BWC tests (#22185) 2016-12-19 13:08:24 +01:00
.projectile Plugin: Remove multicast plugin 2016-01-29 18:41:31 -08:00
CONTRIBUTING.md Document work-around for jar hell in idea_rt.jar file (#24523) 2017-05-08 07:34:36 -04:00
GRADLE.CHEATSHEET install -> publishToMavenLocal 2016-09-21 15:33:49 +02:00
LICENSE.txt assemblies 2011-12-06 13:41:49 +02:00
NOTICE.txt Build: Add notice file generation (#23170) 2017-02-15 09:40:16 -08:00
README.textile Revert "Revert "Build: Upgrade min gradle to 3.3 (#23544)"" 2017-03-21 11:20:04 +01:00
TESTING.asciidoc Allow BWC Testing against a specific branch (#25510) 2017-07-07 11:18:03 +02:00
Vagrantfile Unzip quietly while provisioning virtual machines 2017-07-20 12:45:56 +09:00
build.gradle Shade external dependencies in the rest client jar 2017-07-24 12:55:43 -05:00
gradle.properties Gradle daemon is a demon 2015-11-25 09:33:12 -05:00
settings.gradle Rework bwc snapshot projects to build up to two bwc versions (#24870) 2017-05-29 10:22:32 -04:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant with Multi Types.
** Support for more than one index.
** Support for more than one type per index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined per type for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.
* Open Source under the Apache License, version 2 ("ALv2")

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's create a twitter user, and add some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/user/kimchy?pretty' -H 'Content-Type: application/json' -d '{ "name" : "Shay Banon" }'

curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/user/kimchy?pretty=true'
curl -XGET 'http://localhost:9200/twitter/tweet/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/tweet/2?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/tweet/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/tweet/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the user as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @postDate@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices, as well as multiple types per index. In the previous example we used an index called @twitter@, with two types, @user@ and @tweet@.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/info/1?pretty' -H 'Content-Type: application/json' -d '{ "name" : "Shay Banon" }'

curl -XPUT 'http://localhost:9200/kimchy/tweet/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/tweet/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index, with two types, @info@ and @tweet@. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "index" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replica. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system. You'll need to have at least version 3.3 of Gradle installed.

In order to create a distribution, simply run the @gradle assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about
running the Elasticsearch test suite.

h3. Upgrading from Elasticsearch 1.x?

In order to ensure a smooth upgrade process from earlier versions of
Elasticsearch (1.x), it is required to perform a full cluster restart. Please
see the "setup reference":
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html
for more details on the upgrade process.

h1. License

<pre>
This software is licensed under the Apache License, version 2 ("ALv2"), quoted below.

Copyright 2009-2016 Elasticsearch <https://www.elastic.co>

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.
</pre>