OpenSearch/docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc

411 lines
11 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[role="xpack"]
[testenv="platinum"]
[[put-dfanalytics]]
=== Create {dfanalytics-jobs} API
[subs="attributes"]
++++
<titleabbrev>Create {dfanalytics-jobs}</titleabbrev>
++++
Instantiates a {dfanalytics-job}.
experimental[]
[[ml-put-dfanalytics-request]]
==== {api-request-title}
`PUT _ml/data_frame/analytics/<data_frame_analytics_id>`
[[ml-put-dfanalytics-prereq]]
==== {api-prereq-title}
If the {es} {security-features} are enabled, you must have the following built-in roles and privileges:
* `machine_learning_admin`
* `kibana_user` (UI only)
* source index: `read`, `view_index_metadata`
* destination index: `read`, `create_index`, `manage` and `index`
* cluster: `monitor` (UI only)
For more information, see <<security-privileges>> and <<built-in-roles>>.
[[ml-put-dfanalytics-desc]]
==== {api-description-title}
This API creates a {dfanalytics-job} that performs an analysis on the source
index and stores the outcome in a destination index.
The destination index will be automatically created if it does not exist. The
`index.number_of_shards` and `index.number_of_replicas` settings of the source
index will be copied over the destination index. When the source index matches
multiple indices, these settings will be set to the maximum values found in the
source indices.
The mappings of the source indices are also attempted to be copied over
to the destination index, however, if the mappings of any of the fields don't
match among the source indices, the attempt will fail with an error message.
If the destination index already exists, then it will be use as is. This makes
it possible to set up the destination index in advance with custom settings
and mappings.
[[ml-put-dfanalytics-supported-fields]]
===== Supported fields
====== {oldetection-cap}
{oldetection-cap} requires numeric or boolean data to analyze. The algorithms
don't support missing values therefore fields that have data types other than
numeric or boolean are ignored. Documents where included fields contain missing
values, null values, or an array are also ignored. Therefore the `dest` index
may contain documents that don't have an {olscore}.
====== {regression-cap}
{regression-cap} supports fields that are numeric, `boolean`, `text`, `keyword`,
and `ip`. It is also tolerant of missing values. Fields that are supported are
included in the analysis, other fields are ignored. Documents where included
fields contain an array with two or more values are also ignored. Documents in
the `dest` index that dont contain a results field are not included in the
{reganalysis}.
====== {classification-cap}
{classification-cap} supports fields that are numeric, `boolean`, `text`,
`keyword`, and `ip`. It is also tolerant of missing values. Fields that are
supported are included in the analysis, other fields are ignored. Documents
where included fields contain an array with two or more values are also ignored.
Documents in the `dest` index that dont contain a results field are not
included in the {classanalysis}.
{classanalysis-cap} can be improved by mapping ordinal variable values to a
single number. For example, in case of age ranges, you can model the values as
"0-14" = 0, "15-24" = 1, "25-34" = 2, and so on.
[[ml-put-dfanalytics-path-params]]
==== {api-path-parms-title}
`<data_frame_analytics_id>`::
(Required, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-define]
[[ml-put-dfanalytics-request-body]]
==== {api-request-body-title}
`analysis`::
(Required, object)
include::{docdir}/ml/ml-shared.asciidoc[tag=analysis]
`analyzed_fields`::
(Optional, object)
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields]
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/loganalytics
{
"source": {
"index": "logdata"
},
"dest": {
"index": "logdata_out"
},
"analysis": {
"outlier_detection": {
}
},
"analyzed_fields": {
"includes": [ "request.bytes", "response.counts.error" ],
"excludes": [ "source.geo" ]
}
}
--------------------------------------------------
// TEST[setup:setup_logdata]
`description`::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=description-dfa]
`dest`::
(Required, object)
include::{docdir}/ml/ml-shared.asciidoc[tag=dest]
`model_memory_limit`::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=model-memory-limit-dfa]
`source`::
(object)
include::{docdir}/ml/ml-shared.asciidoc[tag=source-put-dfa]
`allow_lazy_start`::
(Optional, boolean)
include::{docdir}/ml/ml-shared.asciidoc[tag=allow-lazy-start]
[[ml-put-dfanalytics-example]]
==== {api-examples-title}
[[ml-put-dfanalytics-example-preprocess]]
===== Preprocessing actions example
The following example shows how to limit the scope of the analysis to certain
fields, specify excluded fields in the destination index, and use a query to
filter your data before analysis.
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/model-flight-delays-pre
{
"source": {
"index": [
"kibana_sample_data_flights" <1>
],
"query": { <2>
"range": {
"DistanceKilometers": {
"gt": 0
}
}
},
"_source": { <3>
"includes": [],
"excludes": [
"FlightDelay",
"FlightDelayType"
]
}
},
"dest": { <4>
"index": "df-flight-delays",
"results_field": "ml-results"
},
"analysis": {
"regression": {
"dependent_variable": "FlightDelayMin",
"training_percent": 90
}
},
"analyzed_fields": { <5>
"includes": [],
"excludes": [
"FlightNum"
]
},
"model_memory_limit": "100mb"
}
--------------------------------------------------
// TEST[skip:setup kibana sample data]
<1> The source index to analyze.
<2> This query filters out entire documents that will not be present in the
destination index.
<3> The `_source` object defines fields in the dataset that will be included or
excluded in the destination index. In this case, `includes` does not specify any
fields, so the default behavior takes place: all the fields of the source index
will included except the ones that are explicitly specified in `excludes`.
<4> Defines the destination index that contains the results of the analysis and
the fields of the source index specified in the `_source` object. Also defines
the name of the `results_field`.
<5> Specifies fields to be included in or excluded from the analysis. This does
not affect whether the fields will be present in the destination index, only
affects whether they are used in the analysis.
In this example, we can see that all the fields of the source index are included
in the destination index except `FlightDelay` and `FlightDelayType` because
these are defined as excluded fields by the `excludes` parameter of the
`_source` object. The `FlightNum` field is included in the destination index,
however it is not included in the analysis because it is explicitly specified as
excluded field by the `excludes` parameter of the `analyzed_fields` object.
[[ml-put-dfanalytics-example-od]]
===== {oldetection-cap} example
The following example creates the `loganalytics` {dfanalytics-job}, the analysis
type is `outlier_detection`:
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/loganalytics
{
"description": "Outlier detection on log data",
"source": {
"index": "logdata"
},
"dest": {
"index": "logdata_out"
},
"analysis": {
"outlier_detection": {
"compute_feature_influence": true,
"outlier_fraction": 0.05,
"standardization_enabled": true
}
}
}
--------------------------------------------------
// TEST[setup:setup_logdata]
The API returns the following result:
[source,console-result]
----
{
"id": "loganalytics",
"description": "Outlier detection on log data",
"source": {
"index": ["logdata"],
"query": {
"match_all": {}
}
},
"dest": {
"index": "logdata_out",
"results_field": "ml"
},
"analysis": {
"outlier_detection": {
"compute_feature_influence": true,
"outlier_fraction": 0.05,
"standardization_enabled": true
}
},
"model_memory_limit": "1gb",
"create_time" : 1562265491319,
"version" : "7.6.0",
"allow_lazy_start" : false
}
----
// TESTRESPONSE[s/1562265491319/$body.$_path/]
// TESTRESPONSE[s/"version": "7.6.0"/"version": $body.version/]
[[ml-put-dfanalytics-example-r]]
===== {regression-cap} examples
The following example creates the `house_price_regression_analysis`
{dfanalytics-job}, the analysis type is `regression`:
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/house_price_regression_analysis
{
"source": {
"index": "houses_sold_last_10_yrs"
},
"dest": {
"index": "house_price_predictions"
},
"analysis":
{
"regression": {
"dependent_variable": "price"
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
The API returns the following result:
[source,console-result]
----
{
"id" : "house_price_regression_analysis",
"source" : {
"index" : [
"houses_sold_last_10_yrs"
],
"query" : {
"match_all" : { }
}
},
"dest" : {
"index" : "house_price_predictions",
"results_field" : "ml"
},
"analysis" : {
"regression" : {
"dependent_variable" : "price",
"training_percent" : 100
}
},
"model_memory_limit" : "1gb",
"create_time" : 1567168659127,
"version" : "8.0.0",
"allow_lazy_start" : false
}
----
// TESTRESPONSE[s/1567168659127/$body.$_path/]
// TESTRESPONSE[s/"version": "8.0.0"/"version": $body.version/]
The following example creates a job and specifies a training percent:
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/student_performance_mathematics_0.3
{
"source": {
"index": "student_performance_mathematics"
},
"dest": {
"index":"student_performance_mathematics_reg"
},
"analysis":
{
"regression": {
"dependent_variable": "G3",
"training_percent": 70, <1>
"randomize_seed": 19673948271 <2>
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
<1> The `training_percent` defines the percentage of the data set that will be
used for training the model.
<2> The `randomize_seed` is the seed used to randomly pick which data is used
for training.
[[ml-put-dfanalytics-example-c]]
===== {classification-cap} example
The following example creates the `loan_classification` {dfanalytics-job}, the
analysis type is `classification`:
[source,console]
--------------------------------------------------
PUT _ml/data_frame/analytics/loan_classification
{
"source" : {
"index": "loan-applicants"
},
"dest" : {
"index": "loan-applicants-classified"
},
"analysis" : {
"classification": {
"dependent_variable": "label",
"training_percent": 75,
"num_top_classes": 2
}
}
}
--------------------------------------------------
// TEST[skip:TBD]