OpenSearch/docs/reference/analysis/tokenizers/ngram-tokenizer.asciidoc

303 lines
6.0 KiB
Plaintext

[[analysis-ngram-tokenizer]]
=== NGram Tokenizer
The `ngram` tokenizer first breaks text down into words whenever it encounters
one of a list of specified characters, then it emits
https://en.wikipedia.org/wiki/N-gram[N-grams] of each word of the specified
length.
N-grams are like a sliding window that moves across the word - a continuous
sequence of characters of the specified length. They are useful for querying
languages that don't use spaces or that have long compound words, like German.
[float]
=== Example output
With the default settings, the `ngram` tokenizer treats the initial text as a
single token and produces N-grams with minimum length `1` and maximum length
`2`:
[source,js]
---------------------------
POST _analyze
{
"tokenizer": "ngram",
"text": "Quick Fox"
}
---------------------------
// CONSOLE
/////////////////////
[source,js]
----------------------------
{
"tokens": [
{
"token": "Q",
"start_offset": 0,
"end_offset": 1,
"type": "word",
"position": 0
},
{
"token": "Qu",
"start_offset": 0,
"end_offset": 2,
"type": "word",
"position": 1
},
{
"token": "u",
"start_offset": 1,
"end_offset": 2,
"type": "word",
"position": 2
},
{
"token": "ui",
"start_offset": 1,
"end_offset": 3,
"type": "word",
"position": 3
},
{
"token": "i",
"start_offset": 2,
"end_offset": 3,
"type": "word",
"position": 4
},
{
"token": "ic",
"start_offset": 2,
"end_offset": 4,
"type": "word",
"position": 5
},
{
"token": "c",
"start_offset": 3,
"end_offset": 4,
"type": "word",
"position": 6
},
{
"token": "ck",
"start_offset": 3,
"end_offset": 5,
"type": "word",
"position": 7
},
{
"token": "k",
"start_offset": 4,
"end_offset": 5,
"type": "word",
"position": 8
},
{
"token": "k ",
"start_offset": 4,
"end_offset": 6,
"type": "word",
"position": 9
},
{
"token": " ",
"start_offset": 5,
"end_offset": 6,
"type": "word",
"position": 10
},
{
"token": " F",
"start_offset": 5,
"end_offset": 7,
"type": "word",
"position": 11
},
{
"token": "F",
"start_offset": 6,
"end_offset": 7,
"type": "word",
"position": 12
},
{
"token": "Fo",
"start_offset": 6,
"end_offset": 8,
"type": "word",
"position": 13
},
{
"token": "o",
"start_offset": 7,
"end_offset": 8,
"type": "word",
"position": 14
},
{
"token": "ox",
"start_offset": 7,
"end_offset": 9,
"type": "word",
"position": 15
},
{
"token": "x",
"start_offset": 8,
"end_offset": 9,
"type": "word",
"position": 16
}
]
}
----------------------------
// TESTRESPONSE
/////////////////////
The above sentence would produce the following terms:
[source,text]
---------------------------
[ Q, Qu, u, ui, i, ic, c, ck, k, "k ", " ", " F", F, Fo, o, ox, x ]
---------------------------
[float]
=== Configuration
The `ngram` tokenizer accepts the following parameters:
[horizontal]
`min_gram`::
Minimum length of characters in a gram. Defaults to `1`.
`max_gram`::
Maximum length of characters in a gram. Defaults to `2`.
`token_chars`::
Character classes that should be included in a token. Elasticsearch
will split on characters that don't belong to the classes specified.
Defaults to `[]` (keep all characters).
+
Character classes may be any of the following:
+
* `letter` -- for example `a`, `b`, `ï` or `京`
* `digit` -- for example `3` or `7`
* `whitespace` -- for example `" "` or `"\n"`
* `punctuation` -- for example `!` or `"`
* `symbol` -- for example `$` or `√`
TIP: It usually makes sense to set `min_gram` and `max_gram` to the same
value. The smaller the length, the more documents will match but the lower
the quality of the matches. The longer the length, the more specific the
matches. A tri-gram (length `3`) is a good place to start.
[float]
=== Example configuration
In this example, we configure the `ngram` tokenizer to treat letters and
digits as tokens, and to produce tri-grams (grams of length `3`):
[source,js]
----------------------------
PUT my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "ngram",
"min_gram": 3,
"max_gram": 3,
"token_chars": [
"letter",
"digit"
]
}
}
}
}
}
POST my_index/_analyze
{
"analyzer": "my_analyzer",
"text": "2 Quick Foxes."
}
----------------------------
// CONSOLE
/////////////////////
[source,js]
----------------------------
{
"tokens": [
{
"token": "Qui",
"start_offset": 2,
"end_offset": 5,
"type": "word",
"position": 0
},
{
"token": "uic",
"start_offset": 3,
"end_offset": 6,
"type": "word",
"position": 1
},
{
"token": "ick",
"start_offset": 4,
"end_offset": 7,
"type": "word",
"position": 2
},
{
"token": "Fox",
"start_offset": 8,
"end_offset": 11,
"type": "word",
"position": 3
},
{
"token": "oxe",
"start_offset": 9,
"end_offset": 12,
"type": "word",
"position": 4
},
{
"token": "xes",
"start_offset": 10,
"end_offset": 13,
"type": "word",
"position": 5
}
]
}
----------------------------
// TESTRESPONSE
/////////////////////
The above example produces the following terms:
[source,text]
---------------------------
[ Qui, uic, ick, Fox, oxe, xes ]
---------------------------