413 lines
8.9 KiB
Plaintext
413 lines
8.9 KiB
Plaintext
[[analysis-pattern-analyzer]]
|
|
=== Pattern Analyzer
|
|
|
|
The `pattern` analyzer uses a regular expression to split the text into terms.
|
|
The regular expression should match the *token separators* not the tokens
|
|
themselves. The regular expression defaults to `\W+` (or all non-word characters).
|
|
|
|
[WARNING]
|
|
.Beware of Pathological Regular Expressions
|
|
========================================
|
|
|
|
The pattern analyzer uses
|
|
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html[Java Regular Expressions].
|
|
|
|
A badly written regular expression could run very slowly or even throw a
|
|
StackOverflowError and cause the node it is running on to exit suddenly.
|
|
|
|
Read more about http://www.regular-expressions.info/catastrophic.html[pathological regular expressions and how to avoid them].
|
|
|
|
========================================
|
|
|
|
[float]
|
|
=== Example output
|
|
|
|
[source,js]
|
|
---------------------------
|
|
POST _analyze
|
|
{
|
|
"analyzer": "pattern",
|
|
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
|
|
}
|
|
---------------------------
|
|
// CONSOLE
|
|
|
|
/////////////////////
|
|
|
|
[source,console-result]
|
|
----------------------------
|
|
{
|
|
"tokens": [
|
|
{
|
|
"token": "the",
|
|
"start_offset": 0,
|
|
"end_offset": 3,
|
|
"type": "word",
|
|
"position": 0
|
|
},
|
|
{
|
|
"token": "2",
|
|
"start_offset": 4,
|
|
"end_offset": 5,
|
|
"type": "word",
|
|
"position": 1
|
|
},
|
|
{
|
|
"token": "quick",
|
|
"start_offset": 6,
|
|
"end_offset": 11,
|
|
"type": "word",
|
|
"position": 2
|
|
},
|
|
{
|
|
"token": "brown",
|
|
"start_offset": 12,
|
|
"end_offset": 17,
|
|
"type": "word",
|
|
"position": 3
|
|
},
|
|
{
|
|
"token": "foxes",
|
|
"start_offset": 18,
|
|
"end_offset": 23,
|
|
"type": "word",
|
|
"position": 4
|
|
},
|
|
{
|
|
"token": "jumped",
|
|
"start_offset": 24,
|
|
"end_offset": 30,
|
|
"type": "word",
|
|
"position": 5
|
|
},
|
|
{
|
|
"token": "over",
|
|
"start_offset": 31,
|
|
"end_offset": 35,
|
|
"type": "word",
|
|
"position": 6
|
|
},
|
|
{
|
|
"token": "the",
|
|
"start_offset": 36,
|
|
"end_offset": 39,
|
|
"type": "word",
|
|
"position": 7
|
|
},
|
|
{
|
|
"token": "lazy",
|
|
"start_offset": 40,
|
|
"end_offset": 44,
|
|
"type": "word",
|
|
"position": 8
|
|
},
|
|
{
|
|
"token": "dog",
|
|
"start_offset": 45,
|
|
"end_offset": 48,
|
|
"type": "word",
|
|
"position": 9
|
|
},
|
|
{
|
|
"token": "s",
|
|
"start_offset": 49,
|
|
"end_offset": 50,
|
|
"type": "word",
|
|
"position": 10
|
|
},
|
|
{
|
|
"token": "bone",
|
|
"start_offset": 51,
|
|
"end_offset": 55,
|
|
"type": "word",
|
|
"position": 11
|
|
}
|
|
]
|
|
}
|
|
----------------------------
|
|
|
|
/////////////////////
|
|
|
|
|
|
The above sentence would produce the following terms:
|
|
|
|
[source,text]
|
|
---------------------------
|
|
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
|
|
---------------------------
|
|
|
|
[float]
|
|
=== Configuration
|
|
|
|
The `pattern` analyzer accepts the following parameters:
|
|
|
|
[horizontal]
|
|
`pattern`::
|
|
|
|
A http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html[Java regular expression], defaults to `\W+`.
|
|
|
|
`flags`::
|
|
|
|
Java regular expression http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#field.summary[flags].
|
|
Flags should be pipe-separated, eg `"CASE_INSENSITIVE|COMMENTS"`.
|
|
|
|
`lowercase`::
|
|
|
|
Should terms be lowercased or not. Defaults to `true`.
|
|
|
|
`stopwords`::
|
|
|
|
A pre-defined stop words list like `_english_` or an array containing a
|
|
list of stop words. Defaults to `_none_`.
|
|
|
|
`stopwords_path`::
|
|
|
|
The path to a file containing stop words.
|
|
|
|
See the <<analysis-stop-tokenfilter,Stop Token Filter>> for more information
|
|
about stop word configuration.
|
|
|
|
|
|
[float]
|
|
=== Example configuration
|
|
|
|
In this example, we configure the `pattern` analyzer to split email addresses
|
|
on non-word characters or on underscores (`\W|_`), and to lower-case the result:
|
|
|
|
[source,js]
|
|
----------------------------
|
|
PUT my_index
|
|
{
|
|
"settings": {
|
|
"analysis": {
|
|
"analyzer": {
|
|
"my_email_analyzer": {
|
|
"type": "pattern",
|
|
"pattern": "\\W|_", <1>
|
|
"lowercase": true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
POST my_index/_analyze
|
|
{
|
|
"analyzer": "my_email_analyzer",
|
|
"text": "John_Smith@foo-bar.com"
|
|
}
|
|
----------------------------
|
|
// CONSOLE
|
|
|
|
<1> The backslashes in the pattern need to be escaped when specifying the
|
|
pattern as a JSON string.
|
|
|
|
/////////////////////
|
|
|
|
[source,console-result]
|
|
----------------------------
|
|
{
|
|
"tokens": [
|
|
{
|
|
"token": "john",
|
|
"start_offset": 0,
|
|
"end_offset": 4,
|
|
"type": "word",
|
|
"position": 0
|
|
},
|
|
{
|
|
"token": "smith",
|
|
"start_offset": 5,
|
|
"end_offset": 10,
|
|
"type": "word",
|
|
"position": 1
|
|
},
|
|
{
|
|
"token": "foo",
|
|
"start_offset": 11,
|
|
"end_offset": 14,
|
|
"type": "word",
|
|
"position": 2
|
|
},
|
|
{
|
|
"token": "bar",
|
|
"start_offset": 15,
|
|
"end_offset": 18,
|
|
"type": "word",
|
|
"position": 3
|
|
},
|
|
{
|
|
"token": "com",
|
|
"start_offset": 19,
|
|
"end_offset": 22,
|
|
"type": "word",
|
|
"position": 4
|
|
}
|
|
]
|
|
}
|
|
----------------------------
|
|
|
|
/////////////////////
|
|
|
|
|
|
The above example produces the following terms:
|
|
|
|
[source,text]
|
|
---------------------------
|
|
[ john, smith, foo, bar, com ]
|
|
---------------------------
|
|
|
|
[float]
|
|
==== CamelCase tokenizer
|
|
|
|
The following more complicated example splits CamelCase text into tokens:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT my_index
|
|
{
|
|
"settings": {
|
|
"analysis": {
|
|
"analyzer": {
|
|
"camel": {
|
|
"type": "pattern",
|
|
"pattern": "([^\\p{L}\\d]+)|(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)|(?<=[\\p{L}&&[^\\p{Lu}]])(?=\\p{Lu})|(?<=\\p{Lu})(?=\\p{Lu}[\\p{L}&&[^\\p{Lu}]])"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
GET my_index/_analyze
|
|
{
|
|
"analyzer": "camel",
|
|
"text": "MooseX::FTPClass2_beta"
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
/////////////////////
|
|
|
|
[source,console-result]
|
|
----------------------------
|
|
{
|
|
"tokens": [
|
|
{
|
|
"token": "moose",
|
|
"start_offset": 0,
|
|
"end_offset": 5,
|
|
"type": "word",
|
|
"position": 0
|
|
},
|
|
{
|
|
"token": "x",
|
|
"start_offset": 5,
|
|
"end_offset": 6,
|
|
"type": "word",
|
|
"position": 1
|
|
},
|
|
{
|
|
"token": "ftp",
|
|
"start_offset": 8,
|
|
"end_offset": 11,
|
|
"type": "word",
|
|
"position": 2
|
|
},
|
|
{
|
|
"token": "class",
|
|
"start_offset": 11,
|
|
"end_offset": 16,
|
|
"type": "word",
|
|
"position": 3
|
|
},
|
|
{
|
|
"token": "2",
|
|
"start_offset": 16,
|
|
"end_offset": 17,
|
|
"type": "word",
|
|
"position": 4
|
|
},
|
|
{
|
|
"token": "beta",
|
|
"start_offset": 18,
|
|
"end_offset": 22,
|
|
"type": "word",
|
|
"position": 5
|
|
}
|
|
]
|
|
}
|
|
----------------------------
|
|
|
|
/////////////////////
|
|
|
|
|
|
The above example produces the following terms:
|
|
|
|
[source,text]
|
|
---------------------------
|
|
[ moose, x, ftp, class, 2, beta ]
|
|
---------------------------
|
|
|
|
The regex above is easier to understand as:
|
|
|
|
[source,regex]
|
|
--------------------------------------------------
|
|
([^\p{L}\d]+) # swallow non letters and numbers,
|
|
| (?<=\D)(?=\d) # or non-number followed by number,
|
|
| (?<=\d)(?=\D) # or number followed by non-number,
|
|
| (?<=[ \p{L} && [^\p{Lu}]]) # or lower case
|
|
(?=\p{Lu}) # followed by upper case,
|
|
| (?<=\p{Lu}) # or upper case
|
|
(?=\p{Lu} # followed by upper case
|
|
[\p{L}&&[^\p{Lu}]] # then lower case
|
|
)
|
|
--------------------------------------------------
|
|
|
|
[float]
|
|
=== Definition
|
|
|
|
The `pattern` anlayzer consists of:
|
|
|
|
Tokenizer::
|
|
* <<analysis-pattern-tokenizer,Pattern Tokenizer>>
|
|
|
|
Token Filters::
|
|
* <<analysis-lowercase-tokenfilter,Lower Case Token Filter>>
|
|
* <<analysis-stop-tokenfilter,Stop Token Filter>> (disabled by default)
|
|
|
|
If you need to customize the `pattern` analyzer beyond the configuration
|
|
parameters then you need to recreate it as a `custom` analyzer and modify
|
|
it, usually by adding token filters. This would recreate the built-in
|
|
`pattern` analyzer and you can use it as a starting point for further
|
|
customization:
|
|
|
|
[source,js]
|
|
----------------------------------------------------
|
|
PUT /pattern_example
|
|
{
|
|
"settings": {
|
|
"analysis": {
|
|
"tokenizer": {
|
|
"split_on_non_word": {
|
|
"type": "pattern",
|
|
"pattern": "\\W+" <1>
|
|
}
|
|
},
|
|
"analyzer": {
|
|
"rebuilt_pattern": {
|
|
"tokenizer": "split_on_non_word",
|
|
"filter": [
|
|
"lowercase" <2>
|
|
]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
----------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[s/\n$/\nstartyaml\n - compare_analyzers: {index: pattern_example, first: pattern, second: rebuilt_pattern}\nendyaml\n/]
|
|
<1> The default pattern is `\W+` which splits on non-word characters
|
|
and this is where you'd change it.
|
|
<2> You'd add other token filters after `lowercase`.
|