105 lines
3.1 KiB
Plaintext
105 lines
3.1 KiB
Plaintext
[role="xpack"]
|
||
[[ml-geo-functions]]
|
||
=== Geographic functions
|
||
|
||
The geographic functions detect anomalies in the geographic location of the
|
||
input data.
|
||
|
||
The {ml-features} include the following geographic function: `lat_long`.
|
||
|
||
NOTE: You cannot create forecasts for jobs that contain geographic functions.
|
||
You also cannot add rules with conditions to detectors that use geographic
|
||
functions.
|
||
|
||
[float]
|
||
[[ml-lat-long]]
|
||
==== Lat_long
|
||
|
||
The `lat_long` function detects anomalies in the geographic location of the
|
||
input data.
|
||
|
||
This function supports the following properties:
|
||
|
||
* `field_name` (required)
|
||
* `by_field_name` (optional)
|
||
* `over_field_name` (optional)
|
||
* `partition_field_name` (optional)
|
||
|
||
For more information about those properties,
|
||
see {ref}/ml-job-resource.html#ml-detectorconfig[Detector Configuration Objects].
|
||
|
||
.Example 1: Analyzing transactions with the lat_long function
|
||
[source,js]
|
||
--------------------------------------------------
|
||
PUT _ml/anomaly_detectors/example1
|
||
{
|
||
"analysis_config": {
|
||
"detectors": [{
|
||
"function" : "lat_long",
|
||
"field_name" : "transactionCoordinates",
|
||
"by_field_name" : "creditCardNumber"
|
||
}]
|
||
},
|
||
"data_description": {
|
||
"time_field":"timestamp",
|
||
"time_format": "epoch_ms"
|
||
}
|
||
}
|
||
--------------------------------------------------
|
||
// CONSOLE
|
||
// TEST[skip:needs-licence]
|
||
|
||
If you use this `lat_long` function in a detector in your job, it
|
||
detects anomalies where the geographic location of a credit card transaction is
|
||
unusual for a particular customer’s credit card. An anomaly might indicate fraud.
|
||
|
||
IMPORTANT: The `field_name` that you supply must be a single string that contains
|
||
two comma-separated numbers of the form `latitude,longitude`. The `latitude` and
|
||
`longitude` must be in the range -180 to 180 and represent a point on the
|
||
surface of the Earth.
|
||
|
||
For example, JSON data might contain the following transaction coordinates:
|
||
|
||
[source,js]
|
||
--------------------------------------------------
|
||
{
|
||
"time": 1460464275,
|
||
"transactionCoordinates": "40.7,-74.0",
|
||
"creditCardNumber": "1234123412341234"
|
||
}
|
||
--------------------------------------------------
|
||
// NOTCONSOLE
|
||
|
||
In {es}, location data is likely to be stored in `geo_point` fields. For more
|
||
information, see {ref}/geo-point.html[Geo-point datatype]. This data type is not
|
||
supported natively in {ml-features}. You can, however, use Painless scripts
|
||
in `script_fields` in your {dfeed} to transform the data into an appropriate
|
||
format. For example, the following Painless script transforms
|
||
`"coords": {"lat" : 41.44, "lon":90.5}` into `"lat-lon": "41.44,90.5"`:
|
||
|
||
[source,js]
|
||
--------------------------------------------------
|
||
PUT _ml/datafeeds/datafeed-test2
|
||
{
|
||
"job_id": "farequote",
|
||
"indices": ["farequote"],
|
||
"query": {
|
||
"match_all": {
|
||
"boost": 1
|
||
}
|
||
},
|
||
"script_fields": {
|
||
"lat-lon": {
|
||
"script": {
|
||
"source": "doc['coords'].lat + ',' + doc['coords'].lon",
|
||
"lang": "painless"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
--------------------------------------------------
|
||
// CONSOLE
|
||
// TEST[skip:setup:farequote_job]
|
||
|
||
For more information, see <<ml-configuring-transform>>.
|