OpenSearch/docs/reference/sql/functions/aggs.asciidoc

719 lines
20 KiB
Plaintext

[role="xpack"]
[testenv="basic"]
[[sql-functions-aggs]]
=== Aggregate Functions
Functions for computing a _single_ result from a set of input values.
{es-sql} supports aggregate functions only alongside <<sql-syntax-group-by,grouping>> (implicit or explicit).
[[sql-functions-aggs-general]]
[discrete]
=== General Purpose
[[sql-functions-aggs-avg]]
==== `AVG`
.Synopsis:
[source, sql]
--------------------------------------------------
AVG(numeric_field) <1>
--------------------------------------------------
*Input*:
<1> numeric field
*Output*: `double` numeric value
*Description*: Returns the {wikipedia}/Arithmetic_mean[Average] (arithmetic mean) of input values.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggAvg]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggAvgScalars]
--------------------------------------------------
[[sql-functions-aggs-count]]
==== `COUNT`
.Synopsis:
[source, sql]
--------------------------------------------------
COUNT(expression) <1>
--------------------------------------------------
*Input*:
<1> a field name, wildcard (`*`) or any numeric value
*Output*: numeric value
*Description*: Returns the total number (count) of input values.
In case of `COUNT(*)` or `COUNT(<literal>)`, _all_ values are considered (including `null` or missing ones).
In case of `COUNT(<field_name>)` `null` values are not considered.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountStar]
--------------------------------------------------
[[sql-functions-aggs-count-all]]
==== `COUNT(ALL)`
.Synopsis:
[source, sql]
--------------------------------------------------
COUNT(ALL field_name) <1>
--------------------------------------------------
*Input*:
<1> a field name
*Output*: numeric value
*Description*: Returns the total number (count) of all _non-null_ input values. `COUNT(<field_name>)` and `COUNT(ALL <field_name>)` are equivalent.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountAll]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountAllScalars]
--------------------------------------------------
[[sql-functions-aggs-count-distinct]]
==== `COUNT(DISTINCT)`
.Synopsis:
[source, sql]
--------------------------------------------------
COUNT(DISTINCT field_name) <1>
--------------------------------------------------
*Input*:
<1> a field name
*Output*: numeric value
*Description*: Returns the total number of _distinct non-null_ values in input values.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountDistinct]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggCountDistinctScalars]
--------------------------------------------------
[[sql-functions-aggs-first]]
==== `FIRST/FIRST_VALUE`
.Synopsis:
[source, sql]
----------------------------------------------
FIRST(
field_name <1>
[, ordering_field_name]) <2>
----------------------------------------------
*Input*:
<1> target field for the aggregation
<2> optional field used for ordering
*Output*: same type as the input
*Description*: Returns the first **non-NULL** value (if such exists) of the `field_name` input column sorted by
the `ordering_field_name` column. If `ordering_field_name` is not provided, only the `field_name`
column is used for the sorting. E.g.:
[cols="<,<"]
|===
s| a | b
| 100 | 1
| 200 | 1
| 1 | 2
| 2 | 2
| 10 | null
| 20 | null
| null | null
|===
[source, sql]
----------------------
SELECT FIRST(a) FROM t
----------------------
will result in:
[cols="<"]
|===
s| FIRST(a)
| 1
|===
and
[source, sql]
-------------------------
SELECT FIRST(a, b) FROM t
-------------------------
will result in:
[cols="<"]
|===
s| FIRST(a, b)
| 100
|===
["source","sql",subs="attributes,macros"]
-----------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithOneArg]
-----------------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithOneArgAndGroupBy]
--------------------------------------------------------------------
["source","sql",subs="attributes,macros"]
-----------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithTwoArgs]
-----------------------------------------------------------
["source","sql",subs="attributes,macros"]
---------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[firstWithTwoArgsAndGroupBy]
---------------------------------------------------------------------
`FIRST_VALUE` is a name alias and can be used instead of `FIRST`, e.g.:
["source","sql",subs="attributes,macros"]
--------------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[firstValueWithTwoArgsAndGroupBy]
--------------------------------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[firstValueWithTwoArgsAndGroupByScalars]
--------------------------------------------------------------------------
[NOTE]
`FIRST` cannot be used in a HAVING clause.
[NOTE]
`FIRST` cannot be used with columns of type <<text, `text`>> unless
the field is also <<before-enabling-fielddata,saved as a keyword>>.
[[sql-functions-aggs-last]]
==== `LAST/LAST_VALUE`
.Synopsis:
[source, sql]
--------------------------------------------------
LAST(
field_name <1>
[, ordering_field_name]) <2>
--------------------------------------------------
*Input*:
<1> target field for the aggregation
<2> optional field used for ordering
*Output*: same type as the input
*Description*: It's the inverse of <<sql-functions-aggs-first>>. Returns the last **non-NULL** value (if such exists) of the
`field_name` input column sorted descending by the `ordering_field_name` column. If `ordering_field_name` is not
provided, only the `field_name` column is used for the sorting. E.g.:
[cols="<,<"]
|===
s| a | b
| 10 | 1
| 20 | 1
| 1 | 2
| 2 | 2
| 100 | null
| 200 | null
| null | null
|===
[source, sql]
------------------------
SELECT LAST(a) FROM t
------------------------
will result in:
[cols="<"]
|===
s| LAST(a)
| 200
|===
and
[source, sql]
------------------------
SELECT LAST(a, b) FROM t
------------------------
will result in:
[cols="<"]
|===
s| LAST(a, b)
| 2
|===
["source","sql",subs="attributes,macros"]
-----------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithOneArg]
-----------------------------------------------------------
["source","sql",subs="attributes,macros"]
-------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithOneArgAndGroupBy]
-------------------------------------------------------------------
["source","sql",subs="attributes,macros"]
-----------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithTwoArgs]
-----------------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[lastWithTwoArgsAndGroupBy]
--------------------------------------------------------------------
`LAST_VALUE` is a name alias and can be used instead of `LAST`, e.g.:
["source","sql",subs="attributes,macros"]
-------------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[lastValueWithTwoArgsAndGroupBy]
-------------------------------------------------------------------------
["source","sql",subs="attributes,macros"]
-------------------------------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[lastValueWithTwoArgsAndGroupByScalars]
-------------------------------------------------------------------------
[NOTE]
`LAST` cannot be used in `HAVING` clause.
[NOTE]
`LAST` cannot be used with columns of type <<text, `text`>> unless
the field is also <<before-enabling-fielddata,`saved as a keyword`>>.
[[sql-functions-aggs-max]]
==== `MAX`
.Synopsis:
[source, sql]
--------------------------------------------------
MAX(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: same type as the input
*Description*: Returns the maximum value across input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMax]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMaxScalars]
--------------------------------------------------
[NOTE]
`MAX` on a field of type <<text, `text`>> or <<keyword, `keyword`>> is translated into
<<sql-functions-aggs-last>> and therefore, it cannot be used in `HAVING` clause.
[[sql-functions-aggs-min]]
==== `MIN`
.Synopsis:
[source, sql]
--------------------------------------------------
MIN(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: same type as the input
*Description*: Returns the minimum value across input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMin]
--------------------------------------------------
[NOTE]
`MIN` on a field of type <<text, `text`>> or <<keyword, `keyword`>> is translated into
<<sql-functions-aggs-first>> and therefore, it cannot be used in `HAVING` clause.
[[sql-functions-aggs-sum]]
==== `SUM`
.Synopsis:
[source, sql]
--------------------------------------------------
SUM(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `bigint` for integer input, `double` for floating points
*Description*: Returns the sum of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSum]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSumScalars]
--------------------------------------------------
[[sql-functions-aggs-statistics]]
[discrete]
=== Statistics
[[sql-functions-aggs-kurtosis]]
==== `KURTOSIS`
.Synopsis:
[source, sql]
--------------------------------------------------
KURTOSIS(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
{wikipedia}/Kurtosis[Quantify] the shape of the distribution of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggKurtosis]
--------------------------------------------------
[NOTE]
====
`KURTOSIS` cannot be used on top of scalar functions or operators but only directly on a field. So, for example,
the following is not allowed and an error is returned:
[source, sql]
---------------------------------------
SELECT KURTOSIS(salary / 12.0), gender FROM emp GROUP BY gender
---------------------------------------
====
[[sql-functions-aggs-mad]]
==== `MAD`
.Synopsis:
[source, sql]
--------------------------------------------------
MAD(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
{wikipedia}/Median_absolute_deviation[Measure] the variability of the input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMad]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggMadScalars]
--------------------------------------------------
[[sql-functions-aggs-percentile]]
==== `PERCENTILE`
.Synopsis:
[source, sql]
--------------------------------------------------
PERCENTILE(
field_name, <1>
numeric_exp) <2>
--------------------------------------------------
*Input*:
<1> a numeric field
<2> a numeric expression (must be a constant and not based on a field)
*Output*: `double` numeric value
*Description*:
Returns the nth {wikipedia}/Percentile[percentile] (represented by `numeric_exp` parameter)
of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentile]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentileScalars]
--------------------------------------------------
[[sql-functions-aggs-percentile-rank]]
==== `PERCENTILE_RANK`
.Synopsis:
[source, sql]
--------------------------------------------------
PERCENTILE_RANK(
field_name, <1>
numeric_exp) <2>
--------------------------------------------------
*Input*:
<1> a numeric field
<2> a numeric expression (must be a constant and not based on a field)
*Output*: `double` numeric value
*Description*:
Returns the nth {wikipedia}/Percentile_rank[percentile rank] (represented by `numeric_exp` parameter)
of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentileRank]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggPercentileRankScalars]
--------------------------------------------------
[[sql-functions-aggs-skewness]]
==== `SKEWNESS`
.Synopsis:
[source, sql]
--------------------------------------------------
SKEWNESS(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
{wikipedia}/Skewness[Quantify] the asymmetric distribution of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSkewness]
--------------------------------------------------
[NOTE]
====
`SKEWNESS` cannot be used on top of scalar functions but only directly on a field. So, for example, the following is
not allowed and an error is returned:
[source, sql]
---------------------------------------
SELECT SKEWNESS(ROUND(salary / 12.0, 2), gender FROM emp GROUP BY gender
---------------------------------------
====
[[sql-functions-aggs-stddev-pop]]
==== `STDDEV_POP`
.Synopsis:
[source, sql]
--------------------------------------------------
STDDEV_POP(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
Returns the {wikipedia}/Standard_deviations[population standard deviation] of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggStddevPop]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggStddevPopScalars]
--------------------------------------------------
[[sql-functions-aggs-stddev-samp]]
==== `STDDEV_SAMP`
.Synopsis:
[source, sql]
--------------------------------------------------
STDDEV_SAMP(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
Returns the {wikipedia}/Standard_deviations[sample standard deviation] of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggStddevSamp]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggStddevSampScalars]
--------------------------------------------------
[[sql-functions-aggs-sum-squares]]
==== `SUM_OF_SQUARES`
.Synopsis:
[source, sql]
--------------------------------------------------
SUM_OF_SQUARES(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
Returns the sum of squares of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSumOfSquares]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggSumOfSquaresScalars]
--------------------------------------------------
[[sql-functions-aggs-var-pop]]
==== `VAR_POP`
.Synopsis:
[source, sql]
--------------------------------------------------
VAR_POP(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
Returns the {wikipedia}/Variance[population variance] of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggVarPop]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggVarPopScalars]
--------------------------------------------------
[[sql-functions-aggs-var-samp]]
==== `VAR_SAMP`
.Synopsis:
[source, sql]
--------------------------------------------------
VAR_SAMP(field_name) <1>
--------------------------------------------------
*Input*:
<1> a numeric field
*Output*: `double` numeric value
*Description*:
Returns the {wikipedia}/Variance[sample variance] of input values in the field `field_name`.
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggVarSamp]
--------------------------------------------------
["source","sql",subs="attributes,macros"]
--------------------------------------------------
include-tagged::{sql-specs}/docs/docs.csv-spec[aggVarSampScalars]
--------------------------------------------------