OpenSearch/docs/reference/analysis/analyzers/fingerprint-analyzer.asciidoc
Christoph Büscher 25aac4f77f
Remove include_type_name in asciidoc where possible (#37568)
The "include_type_name" parameter was temporarily introduced in #37285 to facilitate
moving the default parameter setting to "false" in many places in the documentation
code snippets. Most of the places can simply be reverted without causing errors.
In this change I looked for asciidoc files that contained the
"include_type_name=true" addition when creating new indices but didn't look
likey they made use of the "_doc" type for mappings. This is mostly the case
e.g. in the analysis docs where index creating often only contains settings. I
manually corrected the use of types in some places where the docs still used an
explicit type name and not the dummy "_doc" type.
2019-01-18 09:34:11 +01:00

181 lines
4.0 KiB
Plaintext

[[analysis-fingerprint-analyzer]]
=== Fingerprint Analyzer
The `fingerprint` analyzer implements a
https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth#fingerprint[fingerprinting algorithm]
which is used by the OpenRefine project to assist in clustering.
Input text is lowercased, normalized to remove extended characters, sorted,
deduplicated and concatenated into a single token. If a stopword list is
configured, stop words will also be removed.
[float]
=== Example output
[source,js]
---------------------------
POST _analyze
{
"analyzer": "fingerprint",
"text": "Yes yes, Gödel said this sentence is consistent and."
}
---------------------------
// CONSOLE
/////////////////////
[source,js]
----------------------------
{
"tokens": [
{
"token": "and consistent godel is said sentence this yes",
"start_offset": 0,
"end_offset": 52,
"type": "fingerprint",
"position": 0
}
]
}
----------------------------
// TESTRESPONSE
/////////////////////
The above sentence would produce the following single term:
[source,text]
---------------------------
[ and consistent godel is said sentence this yes ]
---------------------------
[float]
=== Configuration
The `fingerprint` analyzer accepts the following parameters:
[horizontal]
`separator`::
The character to use to concatenate the terms. Defaults to a space.
`max_output_size`::
The maximum token size to emit. Defaults to `255`. Tokens larger than
this size will be discarded.
`stopwords`::
A pre-defined stop words list like `_english_` or an array containing a
list of stop words. Defaults to `\_none_`.
`stopwords_path`::
The path to a file containing stop words.
See the <<analysis-stop-tokenfilter,Stop Token Filter>> for more information
about stop word configuration.
[float]
=== Example configuration
In this example, we configure the `fingerprint` analyzer to use the
pre-defined list of English stop words:
[source,js]
----------------------------
PUT my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_fingerprint_analyzer": {
"type": "fingerprint",
"stopwords": "_english_"
}
}
}
}
}
POST my_index/_analyze
{
"analyzer": "my_fingerprint_analyzer",
"text": "Yes yes, Gödel said this sentence is consistent and."
}
----------------------------
// CONSOLE
/////////////////////
[source,js]
----------------------------
{
"tokens": [
{
"token": "consistent godel said sentence yes",
"start_offset": 0,
"end_offset": 52,
"type": "fingerprint",
"position": 0
}
]
}
----------------------------
// TESTRESPONSE
/////////////////////
The above example produces the following term:
[source,text]
---------------------------
[ consistent godel said sentence yes ]
---------------------------
[float]
=== Definition
The `fingerprint` tokenizer consists of:
Tokenizer::
* <<analysis-standard-tokenizer,Standard Tokenizer>>
Token Filters (in order)::
* <<analysis-lowercase-tokenfilter,Lower Case Token Filter>>
* <<analysis-asciifolding-tokenfilter>>
* <<analysis-stop-tokenfilter,Stop Token Filter>> (disabled by default)
* <<analysis-fingerprint-tokenfilter>>
If you need to customize the `fingerprint` analyzer beyond the configuration
parameters then you need to recreate it as a `custom` analyzer and modify
it, usually by adding token filters. This would recreate the built-in
`fingerprint` analyzer and you can use it as a starting point for further
customization:
[source,js]
----------------------------------------------------
PUT /fingerprint_example
{
"settings": {
"analysis": {
"analyzer": {
"rebuilt_fingerprint": {
"tokenizer": "standard",
"filter": [
"lowercase",
"asciifolding",
"fingerprint"
]
}
}
}
}
}
----------------------------------------------------
// CONSOLE
// TEST[s/\n$/\nstartyaml\n - compare_analyzers: {index: fingerprint_example, first: fingerprint, second: rebuilt_fingerprint}\nendyaml\n/]