🔎 Open source distributed and RESTful search engine.
Go to file
Lee Hinman c3da66d021 Implement adaptive replica selection (#26128)
* Implement adaptive replica selection

This implements the selection algorithm described in the C3 paper for
determining which copy of the data a query should be routed to.

By using the service time EWMA, response time EWMA, and queue size EWMA we
calculate the score of a node by piggybacking these metrics with each search
request.

Since Elasticsearch lacks the "broadcast to every copy" behavior that Cassandra
has (as mentioned in the C3 paper) to update metrics after a node has been
highly weighted, this implementation adjusts a node's response stats using the
average of the its own and the "best" node's metrics. This is so that a long GC
or other activity that may cause a node's rank to increase dramatically does not
permanently keep a node from having requests routed to it, instead it will
eventually lower its score back to the realm where it is a potential candidate
for new queries.

This feature is off by default and can be turned on with the dynamic setting
`cluster.routing.use_adaptive_replica_selection`.

Relates to #24915, however instead of `b=3` I used `b=4` (after benchmarking)

* Randomly use adaptive replica selection for internal test cluster

* Use an action name *prefix* for retrieving pending requests

* Add unit test for replica selection

* don't use adaptive replica selection in SearchPreferenceIT

* Track client connections in a SearchTransportService instead of TransportService

* Bind `entry` pieces in local variables

* Add javadoc link to C3 paper and javadocs for stat adjustments

* Bind entry's key and value to local variables

* Remove unneeded actionNamePrefix parameter

* Use conns.longValue() instead of cached Long

* Add comments about removing entries from the map

* Pull out bindings for `entry` in IndexShardRoutingTable

* Use .compareTo instead of manually comparing

* add assert for connections not being null and gte to 1

* Copy map for pending search connections instead of "live" map

* Increase the number of pending search requests used for calculating rank when chosen

When a node gets chosen, this increases the number of search counts for the
winning node so that it will not be as likely to be chosen again for
non-concurrent search requests.

* Remove unused HashMap import

* Rename rank -> rankShardsAndUpdateStats

* Rename rankedActiveInitializingShardsIt -> activeInitializingShardsRankedIt

* Instead of precalculating winning node, use "winning" shard from ranked list

* Sort null ranked nodes before nodes that have a rank
2017-08-30 20:55:11 -06:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Remove assemble from build task when assemble removed 2017-06-16 17:19:14 -04:00
buildSrc Remove dead path conf BWC code in build 2017-08-30 13:54:29 -04:00
client Migrate Search requests to use Writeable reading strategies (#26428) 2017-08-30 11:00:33 -07:00
core Implement adaptive replica selection (#26128) 2017-08-30 20:55:11 -06:00
dev-tools Removed static indices and repos and the scripts that create them. 2017-08-10 09:52:29 +02:00
distribution Build: Quiet bwc build output (#26430) 2017-08-30 11:01:17 -07:00
docs Multi-level Nested Sort with Filters (#26395) 2017-08-30 18:52:56 +02:00
modules Migrate Search requests to use Writeable reading strategies (#26428) 2017-08-30 11:00:33 -07:00
plugins ICU plugin: use root locale by default for collators (#26413) 2017-08-29 08:58:36 -07:00
qa Build: Ensure build metadata is written (#26427) 2017-08-30 07:26:33 -07:00
rest-api-spec Throw exception in scroll requests using `from` (#26235) 2017-08-21 15:12:34 +02:00
test Implement adaptive replica selection (#26128) 2017-08-30 20:55:11 -06:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.editorconfig Add simple EditorConfig 2015-11-30 14:47:03 +01:00
.gitignore Add BWC layer to seq no infra and enable BWC tests (#22185) 2016-12-19 13:08:24 +01:00
.projectile Plugin: Remove multicast plugin 2016-01-29 18:41:31 -08:00
CONTRIBUTING.md Clarify IDE versions 2017-08-14 22:19:23 +09:00
GRADLE.CHEATSHEET install -> publishToMavenLocal 2016-09-21 15:33:49 +02:00
LICENSE.txt assemblies 2011-12-06 13:41:49 +02:00
NOTICE.txt Build: Add notice file generation (#23170) 2017-02-15 09:40:16 -08:00
README.textile Fixed typo in README.textile (#26168) 2017-08-11 14:59:57 -04:00
TESTING.asciidoc [DOC] macOS localhost resolve for integ tests 2017-08-23 12:02:57 +03:00
Vagrantfile Unzip quietly while provisioning virtual machines 2017-07-20 12:45:56 +09:00
build.gradle Build: Add git hashes used as build metadata (#26397) 2017-08-28 14:10:06 -07:00
gradle.properties Gradle daemon is a demon 2015-11-25 09:33:12 -05:00
settings.gradle Revert shading for the low level rest client (#26367) 2017-08-25 14:13:12 -05:00

README.textile

h1. Elasticsearch

h2. A Distributed RESTful Search Engine

h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** Native Java API.
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.
* Open Source under the Apache License, version 2 ("ALv2")

h2. Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

h3. Requirements

You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information.

h3. Installation

* "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution.
* Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows.
* Run @curl -X GET http://localhost:9200/@.
* Start more servers ...

h3. Indexing

Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically):

<pre>
curl -XPUT 'http://localhost:9200/twitter/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
</pre>

Now, let's see if the information was added by GETting it:

<pre>
curl -XGET 'http://localhost:9200/twitter/doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/doc/3?pretty=true'
</pre>

h3. Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that @kimchy@ posted:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
</pre>

We can also use the JSON query language Elasticsearch provides instead of a query string:

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
</pre>

Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well):

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

We can also do range search (the @post_date@ was automatically identified as date)

<pre>
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
</pre>

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

h3. Multi Tenant - Indices and Types

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

<pre>
curl -XPUT 'http://localhost:9200/kimchy/doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
</pre>

The above will index information into the @kimchy@ index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well):

<pre>
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "index" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    }
}'
</pre>

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

<pre>
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

Or on all the indices:

<pre>
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
</pre>

{One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

h3. Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replica. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

h3. Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

h3. Building from Source

Elasticsearch uses "Gradle":https://gradle.org for its build system. You'll need to have at least version 3.3 of Gradle installed.

In order to create a distribution, simply run the @gradle assemble@ command in the cloned directory.

The distribution for each project will be created under the @build/distributions@ directory in that project.

See the "TESTING":TESTING.asciidoc file for more information about
running the Elasticsearch test suite.

h3. Upgrading from Elasticsearch 1.x?

In order to ensure a smooth upgrade process from earlier versions of
Elasticsearch (1.x), it is required to perform a full cluster restart. Please
see the "setup reference":
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html
for more details on the upgrade process.

h1. License

<pre>
This software is licensed under the Apache License, version 2 ("ALv2"), quoted below.

Copyright 2009-2016 Elasticsearch <https://www.elastic.co>

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.
</pre>