OpenSearch/docs/reference/analysis/analyzers/standard-analyzer.asciidoc
Jim Ferenczi 7ad71f906a
Upgrade to a Lucene 8 snapshot (#33310)
The main benefit of the upgrade for users is the search optimization for top scored documents when the total hit count is not needed. However this optimization is not activated in this change, there is another issue opened to discuss how it should be integrated smoothly.
Some comments about the change:
* Tests that can produce negative scores have been adapted but we need to forbid them completely: #33309

Closes #32899
2018-09-06 14:42:06 +02:00

305 lines
6.3 KiB
Plaintext

[[analysis-standard-analyzer]]
=== Standard Analyzer
The `standard` analyzer is the default analyzer which is used if none is
specified. It provides grammar based tokenization (based on the Unicode Text
Segmentation algorithm, as specified in
http://unicode.org/reports/tr29/[Unicode Standard Annex #29]) and works well
for most languages.
[float]
=== Example output
[source,js]
---------------------------
POST _analyze
{
"analyzer": "standard",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
---------------------------
// CONSOLE
/////////////////////
[source,js]
----------------------------
{
"tokens": [
{
"token": "the",
"start_offset": 0,
"end_offset": 3,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "2",
"start_offset": 4,
"end_offset": 5,
"type": "<NUM>",
"position": 1
},
{
"token": "quick",
"start_offset": 6,
"end_offset": 11,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "brown",
"start_offset": 12,
"end_offset": 17,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "foxes",
"start_offset": 18,
"end_offset": 23,
"type": "<ALPHANUM>",
"position": 4
},
{
"token": "jumped",
"start_offset": 24,
"end_offset": 30,
"type": "<ALPHANUM>",
"position": 5
},
{
"token": "over",
"start_offset": 31,
"end_offset": 35,
"type": "<ALPHANUM>",
"position": 6
},
{
"token": "the",
"start_offset": 36,
"end_offset": 39,
"type": "<ALPHANUM>",
"position": 7
},
{
"token": "lazy",
"start_offset": 40,
"end_offset": 44,
"type": "<ALPHANUM>",
"position": 8
},
{
"token": "dog's",
"start_offset": 45,
"end_offset": 50,
"type": "<ALPHANUM>",
"position": 9
},
{
"token": "bone",
"start_offset": 51,
"end_offset": 55,
"type": "<ALPHANUM>",
"position": 10
}
]
}
----------------------------
// TESTRESPONSE
/////////////////////
The above sentence would produce the following terms:
[source,text]
---------------------------
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]
---------------------------
[float]
=== Configuration
The `standard` analyzer accepts the following parameters:
[horizontal]
`max_token_length`::
The maximum token length. If a token is seen that exceeds this length then
it is split at `max_token_length` intervals. Defaults to `255`.
`stopwords`::
A pre-defined stop words list like `_english_` or an array containing a
list of stop words. Defaults to `\_none_`.
`stopwords_path`::
The path to a file containing stop words.
See the <<analysis-stop-tokenfilter,Stop Token Filter>> for more information
about stop word configuration.
[float]
=== Example configuration
In this example, we configure the `standard` analyzer to have a
`max_token_length` of 5 (for demonstration purposes), and to use the
pre-defined list of English stop words:
[source,js]
----------------------------
PUT my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_english_analyzer": {
"type": "standard",
"max_token_length": 5,
"stopwords": "_english_"
}
}
}
}
}
POST my_index/_analyze
{
"analyzer": "my_english_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
----------------------------
// CONSOLE
/////////////////////
[source,js]
----------------------------
{
"tokens": [
{
"token": "2",
"start_offset": 4,
"end_offset": 5,
"type": "<NUM>",
"position": 1
},
{
"token": "quick",
"start_offset": 6,
"end_offset": 11,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "brown",
"start_offset": 12,
"end_offset": 17,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "foxes",
"start_offset": 18,
"end_offset": 23,
"type": "<ALPHANUM>",
"position": 4
},
{
"token": "jumpe",
"start_offset": 24,
"end_offset": 29,
"type": "<ALPHANUM>",
"position": 5
},
{
"token": "d",
"start_offset": 29,
"end_offset": 30,
"type": "<ALPHANUM>",
"position": 6
},
{
"token": "over",
"start_offset": 31,
"end_offset": 35,
"type": "<ALPHANUM>",
"position": 7
},
{
"token": "lazy",
"start_offset": 40,
"end_offset": 44,
"type": "<ALPHANUM>",
"position": 9
},
{
"token": "dog's",
"start_offset": 45,
"end_offset": 50,
"type": "<ALPHANUM>",
"position": 10
},
{
"token": "bone",
"start_offset": 51,
"end_offset": 55,
"type": "<ALPHANUM>",
"position": 11
}
]
}
----------------------------
// TESTRESPONSE
/////////////////////
The above example produces the following terms:
[source,text]
---------------------------
[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]
---------------------------
[float]
=== Definition
The `standard` analyzer consists of:
Tokenizer::
* <<analysis-standard-tokenizer,Standard Tokenizer>>
Token Filters::
* <<analysis-lowercase-tokenfilter,Lower Case Token Filter>>
* <<analysis-stop-tokenfilter,Stop Token Filter>> (disabled by default)
If you need to customize the `standard` analyzer beyond the configuration
parameters then you need to recreate it as a `custom` analyzer and modify
it, usually by adding token filters. This would recreate the built-in
`standard` analyzer and you can use it as a starting point:
[source,js]
----------------------------------------------------
PUT /standard_example
{
"settings": {
"analysis": {
"analyzer": {
"rebuilt_standard": {
"tokenizer": "standard",
"filter": [
"lowercase" <1>
]
}
}
}
}
}
----------------------------------------------------
// CONSOLE
// TEST[s/\n$/\nstartyaml\n - compare_analyzers: {index: standard_example, first: standard, second: rebuilt_standard}\nendyaml\n/]
<1> You'd add any token filters after `lowercase`.