mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-03-09 14:34:43 +00:00
This commit updates the default ciphers and TLS protocols that are used when the runtime JDK supports them. New cipher support has been introduced in JDK 11 and 12 along with performance fixes for AES GCM. The ciphers are ordered with PFS ciphers being most preferred, then AEAD ciphers, and finally those with mainstream hardware support. When available stronger encryption is preferred for a given cipher. This is a backport of #41385 and #41808. There are known JDK bugs with TLSv1.3 that have been fixed in various versions. These are: 1. The JDK's bundled HttpsServer will endless loop under JDK11 and JDK 12.0 (Fixed in 12.0.1) based on the way the Apache HttpClient performs a close (half close). 2. In all versions of JDK 11 and 12, the HttpsServer will endless loop when certificates are not trusted or another handshake error occurs. An email has been sent to the openjdk security-dev list and #38646 is open to track this. 3. In JDK 11.0.2 and prior there is a race condition with session resumption that leads to handshake errors when multiple concurrent handshakes are going on between the same client and server. This bug does not appear when client authentication is in use. This is JDK-8213202, which was fixed in 11.0.3 and 12.0. 4. In JDK 11.0.2 and prior there is a bug where resumed TLS sessions do not retain peer certificate information. This is JDK-8212885. The way these issues are addressed is that the current java version is checked and used to determine the supported protocols for tests that provoke these issues.
h1. Elasticsearch h2. A Distributed RESTful Search Engine h3. "https://www.elastic.co/products/elasticsearch":https://www.elastic.co/products/elasticsearch Elasticsearch is a distributed RESTful search engine built for the cloud. Features include: * Distributed and Highly Available Search Engine. ** Each index is fully sharded with a configurable number of shards. ** Each shard can have one or more replicas. ** Read / Search operations performed on any of the replica shards. * Multi Tenant. ** Support for more than one index. ** Index level configuration (number of shards, index storage, ...). * Various set of APIs ** HTTP RESTful API ** Native Java API. ** All APIs perform automatic node operation rerouting. * Document oriented ** No need for upfront schema definition. ** Schema can be defined for customization of the indexing process. * Reliable, Asynchronous Write Behind for long term persistency. * (Near) Real Time Search. * Built on top of Lucene ** Each shard is a fully functional Lucene index ** All the power of Lucene easily exposed through simple configuration / plugins. * Per operation consistency ** Single document level operations are atomic, consistent, isolated and durable. h2. Getting Started First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about. h3. Requirements You need to have a recent version of Java installed. See the "Setup":http://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html#jvm-version page for more information. h3. Installation * "Download":https://www.elastic.co/downloads/elasticsearch and unzip the Elasticsearch official distribution. * Run @bin/elasticsearch@ on unix, or @bin\elasticsearch.bat@ on windows. * Run @curl -X GET http://localhost:9200/@. * Start more servers ... h3. Indexing Let's try and index some twitter like information. First, let's index some tweets (the @twitter@ index will be created automatically): <pre> curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d ' { "user": "elastic", "post_date": "2010-01-15T01:46:38", "message": "Building the site, should be kewl" }' </pre> Now, let's see if the information was added by GETting it: <pre> curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true' curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true' curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true' </pre> h3. Searching Mmm search..., shouldn't it be elastic? Let's find all the tweets that @kimchy@ posted: <pre> curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true' </pre> We can also use the JSON query language Elasticsearch provides instead of a query string: <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match" : { "user": "kimchy" } } }' </pre> Just for kicks, let's get all the documents stored (we should see the tweet from @elastic@ as well): <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> We can also do range search (the @post_date@ was automatically identified as date) <pre> curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "range" : { "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" } } } }' </pre> There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser. h3. Multi Tenant - Indices and Types Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data. Elasticsearch supports multiple indices. In the previous example we used an index called @twitter@ that stored tweets for every user. Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case: <pre> curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T13:12:00", "message": "Trying out Elasticsearch, so far so good?" }' curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d ' { "user": "kimchy", "post_date": "2009-11-15T14:12:12", "message": "Another tweet, will it be indexed?" }' </pre> The above will index information into the @kimchy@ index. Each user will get their own special index. Complete control on the index level is allowed. As an example, in the above case, we would want to change from the default 5 shards with 1 replica per index, to only 1 shard with 1 replica per index (== per twitter user). Here is how this can be done (the configuration can be in yaml as well): <pre> curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d ' { "index" : { "number_of_shards" : 1, "number_of_replicas" : 1 } }' </pre> Search (and similar operations) are multi index aware. This means that we can easily search on more than one index (twitter user), for example: <pre> curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> Or on all the indices: <pre> curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d ' { "query" : { "match_all" : {} } }' </pre> {One liner teaser}: And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends). h3. Distributed, Highly Available Let's face it, things will fail.... Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 5 shards and 1 replica per shard (5/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards). In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed. h3. Where to go from here? We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the "elastic.co":http://www.elastic.co/products/elasticsearch website. General questions can be asked on the "Elastic Discourse forum":https://discuss.elastic.co or on IRC on Freenode at "#elasticsearch":https://webchat.freenode.net/#elasticsearch. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only. h3. Building from Source Elasticsearch uses "Gradle":https://gradle.org for its build system. In order to create a distribution, simply run the @./gradlew assemble@ command in the cloned directory. The distribution for each project will be created under the @build/distributions@ directory in that project. See the "TESTING":TESTING.asciidoc file for more information about running the Elasticsearch test suite. h3. Upgrading from older Elasticsearch versions In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our "upgrade documentation":https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html for more details on the upgrade process.
Description
Languages
Java
99.5%
Groovy
0.4%