526 lines
15 KiB
Plaintext
526 lines
15 KiB
Plaintext
[role="xpack"]
|
|
[testenv="platinum"]
|
|
[[put-dfanalytics]]
|
|
=== Create {dfanalytics-jobs} API
|
|
[subs="attributes"]
|
|
++++
|
|
<titleabbrev>Create {dfanalytics-jobs}</titleabbrev>
|
|
++++
|
|
|
|
Instantiates a {dfanalytics-job}.
|
|
|
|
experimental[]
|
|
|
|
[[ml-put-dfanalytics-request]]
|
|
==== {api-request-title}
|
|
|
|
`PUT _ml/data_frame/analytics/<data_frame_analytics_id>`
|
|
|
|
|
|
[[ml-put-dfanalytics-prereq]]
|
|
==== {api-prereq-title}
|
|
|
|
If the {es} {security-features} are enabled, you must have the following built-in roles and privileges:
|
|
|
|
* `machine_learning_admin`
|
|
* `kibana_user` (UI only)
|
|
|
|
|
|
* source index: `read`, `view_index_metadata`
|
|
* destination index: `read`, `create_index`, `manage` and `index`
|
|
* cluster: `monitor` (UI only)
|
|
|
|
For more information, see <<security-privileges>> and <<built-in-roles>>.
|
|
|
|
|
|
[[ml-put-dfanalytics-desc]]
|
|
==== {api-description-title}
|
|
|
|
This API creates a {dfanalytics-job} that performs an analysis on the source
|
|
index and stores the outcome in a destination index.
|
|
|
|
The destination index will be automatically created if it does not exist. The
|
|
`index.number_of_shards` and `index.number_of_replicas` settings of the source
|
|
index will be copied over the destination index. When the source index matches
|
|
multiple indices, these settings will be set to the maximum values found in the
|
|
source indices.
|
|
|
|
The mappings of the source indices are also attempted to be copied over
|
|
to the destination index, however, if the mappings of any of the fields don't
|
|
match among the source indices, the attempt will fail with an error message.
|
|
|
|
If the destination index already exists, then it will be use as is. This makes
|
|
it possible to set up the destination index in advance with custom settings
|
|
and mappings.
|
|
|
|
[discrete]
|
|
[[ml-hyperparam-optimization]]
|
|
===== Hyperparameter optimization
|
|
|
|
If you don't supply {regression} or {classification} parameters, _hyperparameter
|
|
optimization_ occurs, which sets a value for the undefined parameters. The
|
|
starting point is calculated for data dependent parameters by examining the loss
|
|
on the training data. Subject to the size constraint, this operation provides an
|
|
upper bound on the improvement in validation loss.
|
|
|
|
A fixed number of rounds is used for optimization which depends on the number of
|
|
parameters being optimized. The optimization starts with random search, then
|
|
Bayesian optimization is performed that is targeting maximum expected
|
|
improvement. If you override any parameters by explicitely setting it, the
|
|
optimization calculates the value of the remaining parameters accordingly and
|
|
uses the value you provided for the overridden parameter. The number of rounds
|
|
are reduced respectively. The validation error is estimated in each round by
|
|
using 4-fold cross validation.
|
|
|
|
|
|
[[ml-put-dfanalytics-path-params]]
|
|
==== {api-path-parms-title}
|
|
|
|
`<data_frame_analytics_id>`::
|
|
(Required, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-define]
|
|
|
|
|
|
[[ml-put-dfanalytics-request-body]]
|
|
==== {api-request-body-title}
|
|
|
|
`allow_lazy_start`::
|
|
(Optional, boolean)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=allow-lazy-start]
|
|
|
|
`analysis`::
|
|
(Required, object)
|
|
The analysis configuration, which contains the information necessary to perform
|
|
one of the following types of analysis: {classification}, {oldetection}, or
|
|
{regression}.
|
|
|
|
`analysis`.`classification`:::
|
|
(Required^*^, object)
|
|
The configuration information necessary to perform
|
|
{ml-docs}/dfa-classification.html[{classification}].
|
|
|
|
+
|
|
--
|
|
TIP: Advanced parameters are for fine-tuning {classanalysis}. They are set
|
|
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
|
|
to give minimum validation error. It is highly recommended to use the default
|
|
values unless you fully understand the function of these parameters.
|
|
|
|
--
|
|
|
|
`analysis`.`classification`.`dependent_variable`::::
|
|
(Required, string)
|
|
+
|
|
--
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
|
|
|
|
The data type of the field must be numeric (`integer`, `short`, `long`, `byte`),
|
|
categorical (`ip`, `keyword`, `text`), or boolean.
|
|
--
|
|
|
|
`analysis`.`classification`.`eta`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
|
|
|
|
`analysis`.`classification`.`feature_bag_fraction`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
|
|
|
|
`analysis`.`classification`.`maximum_number_trees`::::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees]
|
|
|
|
`analysis`.`classification`.`gamma`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
|
|
|
|
`analysis`.`classification`.`lambda`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
|
|
|
|
`analysis`.`classification`.`num_top_classes`::::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-classes]
|
|
|
|
`analysis`.`classification`.`prediction_field_name`::::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
|
|
|
|
`analysis`.`classification`.`randomize_seed`::::
|
|
(Optional, long)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
|
|
|
|
`analysis`.`classification`.`training_percent`::::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
|
|
|
|
`analysis`.`outlier_detection`:::
|
|
(Required^*^, object)
|
|
The configuration information necessary to perform
|
|
{ml-docs}/dfa-outlier-detection.html[{oldetection}]:
|
|
|
|
`analysis`.`outlier_detection`.`compute_feature_influence`::::
|
|
(Optional, boolean)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=compute-feature-influence]
|
|
|
|
`analysis`.`outlier_detection`.`feature_influence_threshold`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold]
|
|
|
|
`analysis`.`outlier_detection`.`method`::::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=method]
|
|
|
|
`analysis`.`outlier_detection`.`n_neighbors`::::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=n-neighbors]
|
|
|
|
`analysis`.`outlier_detection`.`outlier_fraction`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=outlier-fraction]
|
|
|
|
`analysis`.`outlier_detection`.`standardization_enabled`::::
|
|
(Optional, boolean)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=standardization-enabled]
|
|
|
|
`analysis`.`regression`:::
|
|
(Required^*^, object)
|
|
The configuration information necessary to perform
|
|
{ml-docs}/dfa-regression.html[{regression}].
|
|
+
|
|
--
|
|
TIP: Advanced parameters are for fine-tuning {reganalysis}. They are set
|
|
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
|
|
to give minimum validation error. It is highly recommended to use the default
|
|
values unless you fully understand the function of these parameters.
|
|
|
|
--
|
|
|
|
`analysis`.`regression`.`dependent_variable`::::
|
|
(Required, string)
|
|
+
|
|
--
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
|
|
|
|
The data type of the field must be numeric.
|
|
--
|
|
|
|
`analysis`.`regression`.`eta`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
|
|
|
|
`analysis`.`regression`.`feature_bag_fraction`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
|
|
|
|
`analysis`.`regression`.`maximum_number_trees`::::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees]
|
|
|
|
`analysis`.`regression`.`gamma`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
|
|
|
|
`analysis`.`regression`.`lambda`::::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
|
|
|
|
`analysis`.`regression`.`prediction_field_name`::::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
|
|
|
|
`analysis`.`regression`.`training_percent`::::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
|
|
|
|
`analysis`.`regression`.`randomize_seed`::::
|
|
(Optional, long)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
|
|
|
|
`analyzed_fields`::
|
|
(Optional, object)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields]
|
|
|
|
`analyzed_fields`.`excludes`:::
|
|
(Optional, array)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields-excludes]
|
|
|
|
`analyzed_fields`.`includes`:::
|
|
(Optional, array)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=analyzed-fields-includes]
|
|
|
|
`description`::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=description-dfa]
|
|
|
|
`dest`::
|
|
(Required, object)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=dest]
|
|
|
|
`model_memory_limit`::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=model-memory-limit-dfa]
|
|
|
|
`source`::
|
|
(object)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=source-put-dfa]
|
|
|
|
|
|
[[ml-put-dfanalytics-example]]
|
|
==== {api-examples-title}
|
|
|
|
|
|
[[ml-put-dfanalytics-example-preprocess]]
|
|
===== Preprocessing actions example
|
|
|
|
The following example shows how to limit the scope of the analysis to certain
|
|
fields, specify excluded fields in the destination index, and use a query to
|
|
filter your data before analysis.
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT _ml/data_frame/analytics/model-flight-delays-pre
|
|
{
|
|
"source": {
|
|
"index": [
|
|
"kibana_sample_data_flights" <1>
|
|
],
|
|
"query": { <2>
|
|
"range": {
|
|
"DistanceKilometers": {
|
|
"gt": 0
|
|
}
|
|
}
|
|
},
|
|
"_source": { <3>
|
|
"includes": [],
|
|
"excludes": [
|
|
"FlightDelay",
|
|
"FlightDelayType"
|
|
]
|
|
}
|
|
},
|
|
"dest": { <4>
|
|
"index": "df-flight-delays",
|
|
"results_field": "ml-results"
|
|
},
|
|
"analysis": {
|
|
"regression": {
|
|
"dependent_variable": "FlightDelayMin",
|
|
"training_percent": 90
|
|
}
|
|
},
|
|
"analyzed_fields": { <5>
|
|
"includes": [],
|
|
"excludes": [
|
|
"FlightNum"
|
|
]
|
|
},
|
|
"model_memory_limit": "100mb"
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[skip:setup kibana sample data]
|
|
|
|
<1> The source index to analyze.
|
|
<2> This query filters out entire documents that will not be present in the
|
|
destination index.
|
|
<3> The `_source` object defines fields in the dataset that will be included or
|
|
excluded in the destination index. In this case, `includes` does not specify any
|
|
fields, so the default behavior takes place: all the fields of the source index
|
|
will included except the ones that are explicitly specified in `excludes`.
|
|
<4> Defines the destination index that contains the results of the analysis and
|
|
the fields of the source index specified in the `_source` object. Also defines
|
|
the name of the `results_field`.
|
|
<5> Specifies fields to be included in or excluded from the analysis. This does
|
|
not affect whether the fields will be present in the destination index, only
|
|
affects whether they are used in the analysis.
|
|
|
|
In this example, we can see that all the fields of the source index are included
|
|
in the destination index except `FlightDelay` and `FlightDelayType` because
|
|
these are defined as excluded fields by the `excludes` parameter of the
|
|
`_source` object. The `FlightNum` field is included in the destination index,
|
|
however it is not included in the analysis because it is explicitly specified as
|
|
excluded field by the `excludes` parameter of the `analyzed_fields` object.
|
|
|
|
|
|
[[ml-put-dfanalytics-example-od]]
|
|
===== {oldetection-cap} example
|
|
|
|
The following example creates the `loganalytics` {dfanalytics-job}, the analysis
|
|
type is `outlier_detection`:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT _ml/data_frame/analytics/loganalytics
|
|
{
|
|
"description": "Outlier detection on log data",
|
|
"source": {
|
|
"index": "logdata"
|
|
},
|
|
"dest": {
|
|
"index": "logdata_out"
|
|
},
|
|
"analysis": {
|
|
"outlier_detection": {
|
|
"compute_feature_influence": true,
|
|
"outlier_fraction": 0.05,
|
|
"standardization_enabled": true
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[setup:setup_logdata]
|
|
|
|
|
|
The API returns the following result:
|
|
|
|
[source,console-result]
|
|
----
|
|
{
|
|
"id": "loganalytics",
|
|
"description": "Outlier detection on log data",
|
|
"source": {
|
|
"index": ["logdata"],
|
|
"query": {
|
|
"match_all": {}
|
|
}
|
|
},
|
|
"dest": {
|
|
"index": "logdata_out",
|
|
"results_field": "ml"
|
|
},
|
|
"analysis": {
|
|
"outlier_detection": {
|
|
"compute_feature_influence": true,
|
|
"outlier_fraction": 0.05,
|
|
"standardization_enabled": true
|
|
}
|
|
},
|
|
"model_memory_limit": "1gb",
|
|
"create_time" : 1562265491319,
|
|
"version" : "7.6.0",
|
|
"allow_lazy_start" : false
|
|
}
|
|
----
|
|
// TESTRESPONSE[s/1562265491319/$body.$_path/]
|
|
// TESTRESPONSE[s/"version": "7.6.0"/"version": $body.version/]
|
|
|
|
|
|
[[ml-put-dfanalytics-example-r]]
|
|
===== {regression-cap} examples
|
|
|
|
The following example creates the `house_price_regression_analysis`
|
|
{dfanalytics-job}, the analysis type is `regression`:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT _ml/data_frame/analytics/house_price_regression_analysis
|
|
{
|
|
"source": {
|
|
"index": "houses_sold_last_10_yrs"
|
|
},
|
|
"dest": {
|
|
"index": "house_price_predictions"
|
|
},
|
|
"analysis":
|
|
{
|
|
"regression": {
|
|
"dependent_variable": "price"
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[skip:TBD]
|
|
|
|
|
|
The API returns the following result:
|
|
|
|
[source,console-result]
|
|
----
|
|
{
|
|
"id" : "house_price_regression_analysis",
|
|
"source" : {
|
|
"index" : [
|
|
"houses_sold_last_10_yrs"
|
|
],
|
|
"query" : {
|
|
"match_all" : { }
|
|
}
|
|
},
|
|
"dest" : {
|
|
"index" : "house_price_predictions",
|
|
"results_field" : "ml"
|
|
},
|
|
"analysis" : {
|
|
"regression" : {
|
|
"dependent_variable" : "price",
|
|
"training_percent" : 100
|
|
}
|
|
},
|
|
"model_memory_limit" : "1gb",
|
|
"create_time" : 1567168659127,
|
|
"version" : "8.0.0",
|
|
"allow_lazy_start" : false
|
|
}
|
|
----
|
|
// TESTRESPONSE[s/1567168659127/$body.$_path/]
|
|
// TESTRESPONSE[s/"version": "8.0.0"/"version": $body.version/]
|
|
|
|
|
|
The following example creates a job and specifies a training percent:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT _ml/data_frame/analytics/student_performance_mathematics_0.3
|
|
{
|
|
"source": {
|
|
"index": "student_performance_mathematics"
|
|
},
|
|
"dest": {
|
|
"index":"student_performance_mathematics_reg"
|
|
},
|
|
"analysis":
|
|
{
|
|
"regression": {
|
|
"dependent_variable": "G3",
|
|
"training_percent": 70, <1>
|
|
"randomize_seed": 19673948271 <2>
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[skip:TBD]
|
|
|
|
<1> The `training_percent` defines the percentage of the data set that will be
|
|
used for training the model.
|
|
<2> The `randomize_seed` is the seed used to randomly pick which data is used
|
|
for training.
|
|
|
|
|
|
[[ml-put-dfanalytics-example-c]]
|
|
===== {classification-cap} example
|
|
|
|
The following example creates the `loan_classification` {dfanalytics-job}, the
|
|
analysis type is `classification`:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT _ml/data_frame/analytics/loan_classification
|
|
{
|
|
"source" : {
|
|
"index": "loan-applicants"
|
|
},
|
|
"dest" : {
|
|
"index": "loan-applicants-classified"
|
|
},
|
|
"analysis" : {
|
|
"classification": {
|
|
"dependent_variable": "label",
|
|
"training_percent": 75,
|
|
"num_top_classes": 2
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[skip:TBD]
|