217 lines
6.3 KiB
Plaintext
217 lines
6.3 KiB
Plaintext
[role="xpack"]
|
|
[testenv="platinum"]
|
|
[[ml-dfa-analysis-objects]]
|
|
=== Analysis configuration objects
|
|
|
|
{dfanalytics-cap} resources contain `analysis` objects. For example, when you
|
|
create a {dfanalytics-job}, you must define the type of analysis it performs.
|
|
This page lists all the available parameters that you can use in the `analysis`
|
|
object grouped by {dfanalytics} types.
|
|
|
|
|
|
[discrete]
|
|
[[oldetection-resources]]
|
|
==== {oldetection-cap} configuration objects
|
|
|
|
An `outlier_detection` configuration object has the following properties:
|
|
|
|
`compute_feature_influence`::
|
|
(Optional, boolean)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=compute-feature-influence]
|
|
|
|
`feature_influence_threshold`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold]
|
|
|
|
`method`::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=method]
|
|
|
|
`n_neighbors`::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=n-neighbors]
|
|
|
|
`outlier_fraction`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=outlier-fraction]
|
|
|
|
`standardization_enabled`::
|
|
(Optional, boolean)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=standardization-enabled]
|
|
|
|
|
|
[discrete]
|
|
[[regression-resources]]
|
|
==== {regression-cap} configuration objects
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
PUT _ml/data_frame/analytics/house_price_regression_analysis
|
|
{
|
|
"source": {
|
|
"index": "houses_sold_last_10_yrs" <1>
|
|
},
|
|
"dest": {
|
|
"index": "house_price_predictions" <2>
|
|
},
|
|
"analysis":
|
|
{
|
|
"regression": { <3>
|
|
"dependent_variable": "price" <4>
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[skip:TBD]
|
|
|
|
<1> Training data is taken from source index `houses_sold_last_10_yrs`.
|
|
<2> Analysis results will be output to destination index
|
|
`house_price_predictions`.
|
|
<3> The regression analysis configuration object.
|
|
<4> Regression analysis will use field `price` to train on. As no other
|
|
parameters have been specified it will train on 100% of eligible data, store its
|
|
prediction in destination index field `price_prediction` and use in-built
|
|
hyperparameter optimization to give minimum validation errors.
|
|
|
|
|
|
[float]
|
|
[[regression-resources-standard]]
|
|
===== Standard parameters
|
|
|
|
`dependent_variable`::
|
|
(Required, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
|
|
+
|
|
--
|
|
The data type of the field must be numeric.
|
|
--
|
|
|
|
`prediction_field_name`::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
|
|
|
|
`training_percent`::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
|
|
|
|
`randomize_seed`::
|
|
(Optional, long)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
|
|
|
|
|
|
[float]
|
|
[[regression-resources-advanced]]
|
|
===== Advanced parameters
|
|
|
|
Advanced parameters are for fine-tuning {reganalysis}. They are set
|
|
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
|
|
to give minimum validation error. It is highly recommended to use the default
|
|
values unless you fully understand the function of these parameters. If these
|
|
parameters are not supplied, their values are automatically tuned to give
|
|
minimum validation error.
|
|
|
|
`eta`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
|
|
|
|
`feature_bag_fraction`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
|
|
|
|
`maximum_number_trees`::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees]
|
|
|
|
`gamma`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
|
|
|
|
`lambda`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
|
|
|
|
|
|
[discrete]
|
|
[[classification-resources]]
|
|
==== {classification-cap} configuration objects
|
|
|
|
|
|
[float]
|
|
[[classification-resources-standard]]
|
|
===== Standard parameters
|
|
|
|
`dependent_variable`::
|
|
(Required, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=dependent-variable]
|
|
+
|
|
--
|
|
The data type of the field must be numeric or boolean.
|
|
--
|
|
|
|
`num_top_classes`::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-classes]
|
|
|
|
`prediction_field_name`::
|
|
(Optional, string)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
|
|
|
|
`training_percent`::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=training-percent]
|
|
|
|
`randomize_seed`::
|
|
(Optional, long)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
|
|
|
|
|
|
[float]
|
|
[[classification-resources-advanced]]
|
|
===== Advanced parameters
|
|
|
|
Advanced parameters are for fine-tuning {classanalysis}. They are set
|
|
automatically by <<ml-hyperparam-optimization,hyperparameter optimization>>
|
|
to give minimum validation error. It is highly recommended to use the default
|
|
values unless you fully understand the function of these parameters. If these
|
|
parameters are not supplied, their values are automatically tuned to give
|
|
minimum validation error.
|
|
|
|
`eta`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=eta]
|
|
|
|
`feature_bag_fraction`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]
|
|
|
|
`maximum_number_trees`::
|
|
(Optional, integer)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=maximum-number-trees]
|
|
|
|
`gamma`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=gamma]
|
|
|
|
`lambda`::
|
|
(Optional, double)
|
|
include::{docdir}/ml/ml-shared.asciidoc[tag=lambda]
|
|
|
|
[discrete]
|
|
[[ml-hyperparam-optimization]]
|
|
==== Hyperparameter optimization
|
|
|
|
If you don't supply {regression} or {classification} parameters, hyperparameter
|
|
optimization will be performed by default to set a value for the undefined
|
|
parameters. The starting point is calculated for data dependent parameters by
|
|
examining the loss on the training data. Subject to the size constraint, this
|
|
operation provides an upper bound on the improvement in validation loss.
|
|
|
|
A fixed number of rounds is used for optimization which depends on the number of
|
|
parameters being optimized. The optimization starts with random search, then
|
|
Bayesian optimization is performed that is targeting maximum expected
|
|
improvement. If you override any parameters, then the optimization will
|
|
calculate the value of the remaining parameters accordingly and use the value
|
|
you provided for the overridden parameter. The number of rounds are reduced
|
|
respectively. The validation error is estimated in each round by using 4-fold
|
|
cross validation.
|