🔎 Open source distributed and RESTful search engine.
Go to file
Costin Leau e22f501018
QL: Backport project to 7.x (#51497)
* Introduce reusable QL plugin for SQL and EQL (#50815)

Extract reusable functionality from SQL into its own dedicated project QL.
Implemented as a plugin, it provides common components across SQL and the upcoming EQL.

While this commit is fairly large, for the most part it's just a big file move from sql package to the newly introduced ql.

(cherry picked from commit ec1ac0d463bfa12a02c8174afbcdd6984345e8b4)

* SQL: Fix incomplete registration of geo NamedWritables

(cherry picked from commit e295763686f9592976e551e504fdad1d2a3a566d)

* QL: Extend NodeSubclass to read classes from jars (#50866)

As the test classes are spread across more than one project, the Gradle
classpath contains not just folders but also jars.
This commit allows the test class to explore the archive content and
load matching classes from said source.

(cherry picked from commit 25ad74928afcbf286dc58f7d430491b0af662f04)

* QL: Remove implicit conversion inside Literal (#50962)

Literal constructor makes an implicit conversion for each value given
which turns out has some subtle side-effects.
Improve MathProcessors to preserve numeric type where possible
Fix bug on issue compatibility between date and intervals
Preserve the source when folding inside the Optimizer

(cherry picked from commit 9b73e225b0aa07a23859550fb117bae571a2b672)

* QL: Refactor DataType for pluggability (#51328)

Change DataType from enum to class
Break DataType enums into QL (default) and SQL types
Make data type conversion pluggable so that new types can be introduced

As part of the process:
- static type conversion in QL package (such as Literal) has been
removed
- several utility classes have been broken into base (QL) and extended
(SQL) parts based on type awareness
- operators (+,-,/,*) are
- due to extensibility, serialization of arithmetic operation has been
slightly changed and pushed down to the operator executor itself

(cherry picked from commit aebda81b30e1563b877a8896309fd50633e0b663)

* Compilation fixes for 7.x
2020-01-27 22:03:58 +02:00
.ci Enable tests in FIPS 140 in JDK 11 (#49485) 2020-01-27 11:14:52 +02:00
.github Add version command to issue template 2017-07-31 08:55:31 +09:00
benchmarks Apply 2-space indent to all gradle scripts (#49071) 2019-11-14 11:01:23 +00:00
buildSrc Upgrade gradle to 6.1.1 (#51460) 2020-01-27 11:25:05 -08:00
client Enable tests in FIPS 140 in JDK 11 (#49485) 2020-01-27 11:14:52 +02:00
dev-tools Add shell script for performing atomic pushes across branches (#50401) 2019-12-19 12:55:36 -08:00
distribution Remove DEBUG-level default logging from actions (#51459) 2020-01-27 10:50:10 +00:00
docs Enable autoscaling in snapshot docs tests (#51474) 2020-01-27 09:49:16 -05:00
gradle Upgrade gradle to 6.1.1 (#51460) 2020-01-27 11:25:05 -08:00
libs Enable tests in FIPS 140 in JDK 11 (#49485) 2020-01-27 11:14:52 +02:00
licenses Reorganize license files 2018-04-20 15:33:59 -07:00
modules Disable reindex against 0.90 on mac (#51449) 2020-01-27 12:42:12 +01:00
plugins Enable tests in FIPS 140 in JDK 11 (#49485) 2020-01-27 11:14:52 +02:00
qa Migrate cron eval bats test to java (#50940) (#51007) 2020-01-27 10:49:01 -08:00
rest-api-spec Begin moving date_histogram to offset rounding (take two) (#51271) (#51495) 2020-01-27 13:40:54 -05:00
server Begin moving date_histogram to offset rounding (take two) (#51271) (#51495) 2020-01-27 13:40:54 -05:00
test Enable tests in FIPS 140 in JDK 11 (#49485) 2020-01-27 11:14:52 +02:00
x-pack QL: Backport project to 7.x (#51497) 2020-01-27 22:03:58 +02:00
.dir-locals.el Go back to 140 column limit in .dir-locals.el 2017-04-14 08:50:53 -06:00
.eclipseformat.xml Tweak formatter config for long generic lines (#51027) 2020-01-15 13:17:37 +00:00
.editorconfig Remove default indent from .editorconfig (#49183) 2019-11-18 08:05:53 +00:00
.gitattributes Add a CHANGELOG file for release notes. (#29450) 2018-04-18 07:42:05 -07:00
.gitignore Add generated benchmark files to gitignore (#51000) 2020-01-14 16:18:28 -07:00
CONTRIBUTING.md Require JDK 13 for compilation (#50004) 2019-12-11 16:29:15 -05:00
LICENSE.txt Clarify mixed license text (#45637) 2019-08-16 13:39:12 -04:00
NOTICE.txt Restore date aggregation performance in UTC case (#38221) (#38700) 2019-02-11 16:30:48 +03:00
README.asciidoc [DOCS] Convert main README to asciidoc (#50303) (#50384) 2019-12-19 12:58:22 -05:00
TESTING.asciidoc Detail the IDEs options for configuring the debug step (#48507) 2019-10-25 17:27:48 +03:00
Vagrantfile Add Docker packaging tests on 7.x (#48857) 2019-11-05 15:17:59 +00:00
build.gradle Format projects under :distribution:tools (#51292) 2020-01-22 11:19:17 +00:00
gradle.properties Testclusters: improove timeout handling (#43440) 2019-07-01 11:39:53 +03:00
gradlew Upgrade to Gradle 6.0 (#49211) (#49994) 2019-12-09 11:34:35 -08:00
gradlew.bat Upgrade to Gradle 5.5 (#43788) (#43832) 2019-07-01 11:54:58 -07:00
settings.gradle Remove UBI-based Docker images (#50747) 2020-01-08 20:30:12 -05:00

README.asciidoc

= Elasticsearch

== A Distributed RESTful Search Engine

=== https://www.elastic.co/products/elasticsearch[https://www.elastic.co/products/elasticsearch]

Elasticsearch is a distributed RESTful search engine built for the cloud. Features include:

* Distributed and Highly Available Search Engine.
** Each index is fully sharded with a configurable number of shards.
** Each shard can have one or more replicas.
** Read / Search operations performed on any of the replica shards.
* Multi Tenant.
** Support for more than one index.
** Index level configuration (number of shards, index storage, ...).
* Various set of APIs
** HTTP RESTful API
** All APIs perform automatic node operation rerouting.
* Document oriented
** No need for upfront schema definition.
** Schema can be defined for customization of the indexing process.
* Reliable, Asynchronous Write Behind for long term persistency.
* (Near) Real Time Search.
* Built on top of Apache Lucene
** Each shard is a fully functional Lucene index
** All the power of Lucene easily exposed through simple configuration / plugins.
* Per operation consistency
** Single document level operations are atomic, consistent, isolated and durable.

== Getting Started

First of all, DON'T PANIC. It will take 5 minutes to get the gist of what Elasticsearch is all about.

=== Installation

* https://www.elastic.co/downloads/elasticsearch[Download] and unpack the Elasticsearch official distribution.
* Run `bin/elasticsearch` on Linux or macOS. Run `bin\elasticsearch.bat` on Windows.
* Run `curl -X GET http://localhost:9200/`.
* Start more servers ...

=== Indexing

Let's try and index some twitter like information. First, let's index some tweets (the `twitter` index will be created automatically):

----
curl -XPUT 'http://localhost:9200/twitter/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'

curl -XPUT 'http://localhost:9200/twitter/_doc/3?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "elastic",
    "post_date": "2010-01-15T01:46:38",
    "message": "Building the site, should be kewl"
}'
----

Now, let's see if the information was added by GETting it:

----
curl -XGET 'http://localhost:9200/twitter/_doc/1?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/2?pretty=true'
curl -XGET 'http://localhost:9200/twitter/_doc/3?pretty=true'
----

=== Searching

Mmm search..., shouldn't it be elastic?
Let's find all the tweets that `kimchy` posted:

----
curl -XGET 'http://localhost:9200/twitter/_search?q=user:kimchy&pretty=true'
----

We can also use the JSON query language Elasticsearch provides instead of a query string:

----
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match" : { "user": "kimchy" }
    }
}'
----

Just for kicks, let's get all the documents stored (we should see the tweet from `elastic` as well):

----
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
----

We can also do range search (the `post_date` was automatically identified as date)

----
curl -XGET 'http://localhost:9200/twitter/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "range" : {
            "post_date" : { "from" : "2009-11-15T13:00:00", "to" : "2009-11-15T14:00:00" }
        }
    }
}'
----

There are many more options to perform search, after all, it's a search product no? All the familiar Lucene queries are available through the JSON query language, or through the query parser.

=== Multi Tenant - Indices

Man, that twitter index might get big (in this case, index size == valuation). Let's see if we can structure our twitter system a bit differently in order to support such large amounts of data.

Elasticsearch supports multiple indices. In the previous example we used an index called `twitter` that stored tweets for every user.

Another way to define our simple twitter system is to have a different index per user (note, though that each index has an overhead). Here is the indexing curl's in this case:

----
curl -XPUT 'http://localhost:9200/kimchy/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T13:12:00",
    "message": "Trying out Elasticsearch, so far so good?"
}'

curl -XPUT 'http://localhost:9200/kimchy/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
    "user": "kimchy",
    "post_date": "2009-11-15T14:12:12",
    "message": "Another tweet, will it be indexed?"
}'
----

The above will index information into the `kimchy` index. Each user will get their own special index.

Complete control on the index level is allowed. As an example, in the above case, we might want to change from the default 1 shards with 1 replica per index, to 2 shards with 1 replica per index (because this user tweets a lot). Here is how this can be done (the configuration can be in yaml as well):

----
curl -XPUT http://localhost:9200/another_user?pretty -H 'Content-Type: application/json' -d '
{
    "settings" : {
        "index.number_of_shards" : 2,
        "index.number_of_replicas" : 1
    }
}'
----

Search (and similar operations) are multi index aware. This means that we can easily search on more than one
index (twitter user), for example:

----
curl -XGET 'http://localhost:9200/kimchy,another_user/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
----

Or on all the indices:

----
curl -XGET 'http://localhost:9200/_search?pretty=true' -H 'Content-Type: application/json' -d '
{
    "query" : {
        "match_all" : {}
    }
}'
----

And the cool part about that? You can easily search on multiple twitter users (indices), with different boost levels per user (index), making social search so much simpler (results from my friends rank higher than results from friends of my friends).

=== Distributed, Highly Available

Let's face it, things will fail....

Elasticsearch is a highly available and distributed search engine. Each index is broken down into shards, and each shard can have one or more replicas. By default, an index is created with 1 shard and 1 replica per shard (1/1). There are many topologies that can be used, including 1/10 (improve search performance), or 20/1 (improve indexing performance, with search executed in a map reduce fashion across shards).

In order to play with the distributed nature of Elasticsearch, simply bring more nodes up and shut down nodes. The system will continue to serve requests (make sure you use the correct http port) with the latest data indexed.

=== Where to go from here?

We have just covered a very small portion of what Elasticsearch is all about. For more information, please refer to the http://www.elastic.co/products/elasticsearch[elastic.co] website. General questions can be asked on the https://discuss.elastic.co[Elastic Forum] or https://ela.st/slack[on Slack]. The Elasticsearch GitHub repository is reserved for bug reports and feature requests only.

=== Building from Source

Elasticsearch uses https://gradle.org[Gradle] for its build system.

In order to create a distribution, simply run the `./gradlew assemble` command in the cloned directory.

The distribution for each project will be created under the `build/distributions` directory in that project.

See the xref:TESTING.asciidoc[TESTING] for more information about running the Elasticsearch test suite.

=== Upgrading from older Elasticsearch versions

In order to ensure a smooth upgrade process from earlier versions of Elasticsearch, please see our https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html[upgrade documentation] for more details on the upgrade process.