OpenSearch/docs/reference/aggregations/pipeline/avg-bucket-aggregation.asciidoc
Clinton Gormley ff4a2519f2 Update experimental labels in the docs (#25727)
Relates https://github.com/elastic/elasticsearch/issues/19798

Removed experimental label from:
* Painless
* Diversified Sampler Agg
* Sampler Agg
* Significant Terms Agg
* Terms Agg document count error and execution_hint
* Cardinality Agg precision_threshold
* Pipeline Aggregations
* index.shard.check_on_startup
* index.store.type (added warning)
* Preloading data into the file system cache
* foreach ingest processor
* Field caps API
* Profile API

Added experimental label to:
* Moving Average Agg Prediction


Changed experimental to beta for:
* Adjacency matrix agg
* Normalizers
* Tasks API
* Index sorting

Labelled experimental in Lucene:
* ICU plugin custom rules file
* Flatten graph token filter
* Synonym graph token filter
* Word delimiter graph token filter
* Simple pattern tokenizer
* Simple pattern split tokenizer

Replaced experimental label with warning that details may change in the future:
* Analysis explain output format
* Segments verbose output format
* Percentile Agg compression and HDR Histogram
* Percentile Rank Agg HDR Histogram
2017-07-18 14:06:22 +02:00

113 lines
3.0 KiB
Plaintext

[[search-aggregations-pipeline-avg-bucket-aggregation]]
=== Avg Bucket Aggregation
A sibling pipeline aggregation which calculates the (mean) average value of a specified metric in a sibling aggregation.
The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
==== Syntax
An `avg_bucket` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
"avg_bucket": {
"buckets_path": "the_sum"
}
}
--------------------------------------------------
// NOTCONSOLE
.`avg_bucket` Parameters
|===
|Parameter Name |Description |Required |Default Value
|`buckets_path` |The path to the buckets we wish to find the average for (see <<buckets-path-syntax>> for more
details) |Required |
|`gap_policy` |The policy to apply when gaps are found in the data (see <<gap-policy>> for more
details) |Optional |`skip`
|`format` |format to apply to the output value of this aggregation |Optional | `null`
|===
The following snippet calculates the average of the total monthly `sales`:
[source,js]
--------------------------------------------------
POST /_search
{
"size": 0,
"aggs": {
"sales_per_month": {
"date_histogram": {
"field": "date",
"interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"avg_monthly_sales": {
"avg_bucket": {
"buckets_path": "sales_per_month>sales" <1>
}
}
}
}
--------------------------------------------------
// CONSOLE
// TEST[setup:sales]
<1> `buckets_path` instructs this avg_bucket aggregation that we want the (mean) average value of the `sales` aggregation in the
`sales_per_month` date histogram.
And the following may be the response:
[source,js]
--------------------------------------------------
{
"took": 11,
"timed_out": false,
"_shards": ...,
"hits": ...,
"aggregations": {
"sales_per_month": {
"buckets": [
{
"key_as_string": "2015/01/01 00:00:00",
"key": 1420070400000,
"doc_count": 3,
"sales": {
"value": 550.0
}
},
{
"key_as_string": "2015/02/01 00:00:00",
"key": 1422748800000,
"doc_count": 2,
"sales": {
"value": 60.0
}
},
{
"key_as_string": "2015/03/01 00:00:00",
"key": 1425168000000,
"doc_count": 2,
"sales": {
"value": 375.0
}
}
]
},
"avg_monthly_sales": {
"value": 328.33333333333333
}
}
}
--------------------------------------------------
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]