mirror of
https://github.com/honeymoose/OpenSearch.git
synced 2025-02-06 13:08:29 +00:00
222ee721ec
Similar to what the moving function aggregation does, except merging windows of percentiles sketches together instead of cumulatively merging final metrics
163 lines
5.7 KiB
Plaintext
163 lines
5.7 KiB
Plaintext
[role="xpack"]
|
|
[testenv="basic"]
|
|
[[search-aggregations-pipeline-moving-percentiles-aggregation]]
|
|
=== Moving Percentiles Aggregation
|
|
|
|
Given an ordered series of <<search-aggregations-metrics-percentile-aggregation, percentiles>>, the Moving Percentile aggregation
|
|
will slide a window across those percentiles and allow the user to compute the cumulative percentile.
|
|
|
|
This is conceptually very similar to the <<search-aggregations-pipeline-movfn-aggregation, Moving Function>> pipeline aggregation,
|
|
except it works on the percentiles sketches instead of the actual buckets values.
|
|
|
|
==== Syntax
|
|
|
|
A `moving_percentiles` aggregation looks like this in isolation:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"moving_percentiles": {
|
|
"buckets_path": "the_percentile",
|
|
"window": 10
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[moving-percentiles-params]]
|
|
.`moving_percentiles` Parameters
|
|
[options="header"]
|
|
|===
|
|
|Parameter Name |Description |Required |Default Value
|
|
|`buckets_path` |Path to the percentile of interest (see <<buckets-path-syntax, `buckets_path` Syntax>> for more details |Required |
|
|
|`window` |The size of window to "slide" across the histogram. |Required |
|
|
|`shift` |<<shift-parameter, Shift>> of window position. |Optional | 0
|
|
|===
|
|
|
|
`moving_percentiles` aggregations must be embedded inside of a `histogram` or `date_histogram` aggregation. They can be
|
|
embedded like any other metric aggregation:
|
|
|
|
[source,console]
|
|
--------------------------------------------------
|
|
POST /_search
|
|
{
|
|
"size": 0,
|
|
"aggs": {
|
|
"my_date_histo":{ <1>
|
|
"date_histogram":{
|
|
"field":"date",
|
|
"calendar_interval":"1M"
|
|
},
|
|
"aggs":{
|
|
"the_percentile":{ <2>
|
|
"percentiles":{
|
|
"field": "price",
|
|
"percents": [ 1.0, 99.0 ]
|
|
}
|
|
},
|
|
"the_movperc": {
|
|
"moving_percentiles": {
|
|
"buckets_path": "the_percentile", <3>
|
|
"window": 10
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TEST[setup:sales]
|
|
|
|
<1> A `date_histogram` named "my_date_histo" is constructed on the "timestamp" field, with one-day intervals
|
|
<2> A `percentile` metric is used to calculate the percentiles of a field.
|
|
<3> Finally, we specify a `moving_percentiles` aggregation which uses "the_percentile" sketch as its input.
|
|
|
|
Moving percentiles are built by first specifying a `histogram` or `date_histogram` over a field. You then add
|
|
a percentile metric inside of that histogram. Finally, the `moving_percentiles` is embedded inside the histogram.
|
|
The `buckets_path` parameter is then used to "point" at the percentiles aggregation inside of the histogram (see
|
|
<<buckets-path-syntax>> for a description of the syntax for `buckets_path`).
|
|
|
|
And the following may be the response:
|
|
|
|
[source,console-result]
|
|
--------------------------------------------------
|
|
{
|
|
"took": 11,
|
|
"timed_out": false,
|
|
"_shards": ...,
|
|
"hits": ...,
|
|
"aggregations": {
|
|
"my_date_histo": {
|
|
"buckets": [
|
|
{
|
|
"key_as_string": "2015/01/01 00:00:00",
|
|
"key": 1420070400000,
|
|
"doc_count": 3,
|
|
"the_percentile": {
|
|
"values": {
|
|
"1.0": 150.0,
|
|
"99.0": 200.0
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"key_as_string": "2015/02/01 00:00:00",
|
|
"key": 1422748800000,
|
|
"doc_count": 2,
|
|
"the_percentile": {
|
|
"values": {
|
|
"1.0": 10.0,
|
|
"99.0": 50.0
|
|
}
|
|
},
|
|
"the_movperc": {
|
|
"values": {
|
|
"1.0": 150.0,
|
|
"99.0": 200.0
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"key_as_string": "2015/03/01 00:00:00",
|
|
"key": 1425168000000,
|
|
"doc_count": 2,
|
|
"the_percentile": {
|
|
"values": {
|
|
"1.0": 175.0,
|
|
"99.0": 200.0
|
|
}
|
|
},
|
|
"the_movperc": {
|
|
"values": {
|
|
"1.0": 10.0,
|
|
"99.0": 200.0
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/"took": 11/"took": $body.took/]
|
|
// TESTRESPONSE[s/"_shards": \.\.\./"_shards": $body._shards/]
|
|
// TESTRESPONSE[s/"hits": \.\.\./"hits": $body.hits/]
|
|
|
|
The output format of the `moving_percentiles` aggregation is inherited from the format of the referenced
|
|
<<search-aggregations-metrics-percentile-aggregation,`percentiles`>> aggregation.
|
|
|
|
Moving percentiles pipeline aggregations always run with `skip` gap policy.
|
|
|
|
|
|
[[moving-percentiles-shift-parameter]]
|
|
==== shift parameter
|
|
|
|
By default (with `shift = 0`), the window that is offered for calculation is the last `n` values excluding the current bucket.
|
|
Increasing `shift` by 1 moves starting window position by `1` to the right.
|
|
|
|
- To include current bucket to the window, use `shift = 1`.
|
|
- For center alignment (`n / 2` values before and after the current bucket), use `shift = window / 2`.
|
|
- For right alignment (`n` values after the current bucket), use `shift = window`.
|
|
|
|
If either of window edges moves outside the borders of data series, the window shrinks to include available values only.
|