2148 lines
65 KiB
Plaintext
2148 lines
65 KiB
Plaintext
[[pipeline]]
|
|
== Pipeline Definition
|
|
|
|
A pipeline is a definition of a series of <<ingest-processors, processors>> that are to be executed
|
|
in the same order as they are declared. A pipeline consists of two main fields: a `description`
|
|
and a list of `processors`:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors" : [ ... ]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The `description` is a special field to store a helpful description of
|
|
what the pipeline does.
|
|
|
|
The `processors` parameter defines a list of processors to be executed in
|
|
order.
|
|
|
|
[[ingest-apis]]
|
|
== Ingest APIs
|
|
|
|
The following ingest APIs are available for managing pipelines:
|
|
|
|
* <<put-pipeline-api>> to add or update a pipeline
|
|
* <<get-pipeline-api>> to return a specific pipeline
|
|
* <<delete-pipeline-api>> to delete a pipeline
|
|
* <<simulate-pipeline-api>> to simulate a call to a pipeline
|
|
|
|
[[put-pipeline-api]]
|
|
=== Put Pipeline API
|
|
|
|
The put pipeline API adds pipelines and updates existing pipelines in the cluster.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT _ingest/pipeline/my-pipeline-id
|
|
{
|
|
"description" : "describe pipeline",
|
|
"processors" : [
|
|
{
|
|
"set" : {
|
|
"field": "foo",
|
|
"value": "bar"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
NOTE: The put pipeline API also instructs all ingest nodes to reload their in-memory representation of pipelines, so that
|
|
pipeline changes take effect immediately.
|
|
|
|
[[get-pipeline-api]]
|
|
=== Get Pipeline API
|
|
|
|
The get pipeline API returns pipelines based on ID. This API always returns a local reference of the pipeline.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
GET _ingest/pipeline/my-pipeline-id
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[continued]
|
|
|
|
Example response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"my-pipeline-id" : {
|
|
"description" : "describe pipeline",
|
|
"processors" : [
|
|
{
|
|
"set" : {
|
|
"field" : "foo",
|
|
"value" : "bar"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE
|
|
|
|
For each returned pipeline, the source and the version are returned.
|
|
The version is useful for knowing which version of the pipeline the node has.
|
|
You can specify multiple IDs to return more than one pipeline. Wildcards are also supported.
|
|
|
|
[float]
|
|
[[versioning-pipelines]]
|
|
==== Pipeline Versioning
|
|
|
|
Pipelines can optionally add a `version` number, which can be any integer value,
|
|
in order to simplify pipeline management by external systems. The `version`
|
|
field is completely optional and it is meant solely for external management of
|
|
pipelines. To unset a `version`, simply replace the pipeline without specifying
|
|
one.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT _ingest/pipeline/my-pipeline-id
|
|
{
|
|
"description" : "describe pipeline",
|
|
"version" : 123,
|
|
"processors" : [
|
|
{
|
|
"set" : {
|
|
"field": "foo",
|
|
"value": "bar"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
To check for the `version`, you can
|
|
<<common-options-response-filtering, filter responses>>
|
|
using `filter_path` to limit the response to just the `version`:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
GET /_ingest/pipeline/my-pipeline-id?filter_path=*.version
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[continued]
|
|
|
|
This should give a small response that makes it both easy and inexpensive to parse:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"my-pipeline-id" : {
|
|
"version" : 123
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE
|
|
|
|
[[delete-pipeline-api]]
|
|
=== Delete Pipeline API
|
|
|
|
The delete pipeline API deletes pipelines by ID or wildcard match (`my-*`, `*`).
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
DELETE _ingest/pipeline/my-pipeline-id
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[continued]
|
|
|
|
////
|
|
Hidden setup for wildcard test:
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT _ingest/pipeline/wild-one
|
|
{
|
|
"description" : "first pipeline to be wildcard deleted",
|
|
"processors" : [ ]
|
|
}
|
|
|
|
PUT _ingest/pipeline/wild-two
|
|
{
|
|
"description" : "second pipeline to be wildcard deleted",
|
|
"processors" : [ ]
|
|
}
|
|
|
|
DELETE _ingest/pipeline/*
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
Hidden expected response:
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"acknowledged": true
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE
|
|
////
|
|
|
|
[[simulate-pipeline-api]]
|
|
=== Simulate Pipeline API
|
|
|
|
The simulate pipeline API executes a specific pipeline against
|
|
the set of documents provided in the body of the request.
|
|
|
|
You can either specify an existing pipeline to execute
|
|
against the provided documents, or supply a pipeline definition in
|
|
the body of the request.
|
|
|
|
Here is the structure of a simulate request with a pipeline definition provided
|
|
in the body of the request:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline" : {
|
|
// pipeline definition here
|
|
},
|
|
"docs" : [
|
|
{ "_source": {/** first document **/} },
|
|
{ "_source": {/** second document **/} },
|
|
// ...
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Here is the structure of a simulate request against an existing pipeline:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/my-pipeline-id/_simulate
|
|
{
|
|
"docs" : [
|
|
{ "_source": {/** first document **/} },
|
|
{ "_source": {/** second document **/} },
|
|
// ...
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Here is an example of a simulate request with a pipeline defined in the request
|
|
and its response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline" :
|
|
{
|
|
"description": "_description",
|
|
"processors": [
|
|
{
|
|
"set" : {
|
|
"field" : "field2",
|
|
"value" : "_value"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs": [
|
|
{
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "bar"
|
|
}
|
|
},
|
|
{
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "rab"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
Response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs": [
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_source": {
|
|
"field2": "_value",
|
|
"foo": "bar"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2017-05-04T22:30:03.187Z"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_source": {
|
|
"field2": "_value",
|
|
"foo": "rab"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2017-05-04T22:30:03.188Z"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/"2017-05-04T22:30:03.187Z"/$body.docs.0.doc._ingest.timestamp/]
|
|
// TESTRESPONSE[s/"2017-05-04T22:30:03.188Z"/$body.docs.1.doc._ingest.timestamp/]
|
|
|
|
[[ingest-verbose-param]]
|
|
==== Viewing Verbose Results
|
|
You can use the simulate pipeline API to see how each processor affects the ingest document
|
|
as it passes through the pipeline. To see the intermediate results of
|
|
each processor in the simulate request, you can add the `verbose` parameter
|
|
to the request.
|
|
|
|
Here is an example of a verbose request and its response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate?verbose
|
|
{
|
|
"pipeline" :
|
|
{
|
|
"description": "_description",
|
|
"processors": [
|
|
{
|
|
"set" : {
|
|
"field" : "field2",
|
|
"value" : "_value2"
|
|
}
|
|
},
|
|
{
|
|
"set" : {
|
|
"field" : "field3",
|
|
"value" : "_value3"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs": [
|
|
{
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "bar"
|
|
}
|
|
},
|
|
{
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_id": "id",
|
|
"_source": {
|
|
"foo": "rab"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
Response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs": [
|
|
{
|
|
"processor_results": [
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_source": {
|
|
"field2": "_value2",
|
|
"foo": "bar"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2017-05-04T22:46:09.674Z"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_source": {
|
|
"field3": "_value3",
|
|
"field2": "_value2",
|
|
"foo": "bar"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2017-05-04T22:46:09.675Z"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"processor_results": [
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_source": {
|
|
"field2": "_value2",
|
|
"foo": "rab"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2017-05-04T22:46:09.676Z"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"doc": {
|
|
"_id": "id",
|
|
"_index": "index",
|
|
"_type": "_doc",
|
|
"_source": {
|
|
"field3": "_value3",
|
|
"field2": "_value2",
|
|
"foo": "rab"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2017-05-04T22:46:09.677Z"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/"2017-05-04T22:46:09.674Z"/$body.docs.0.processor_results.0.doc._ingest.timestamp/]
|
|
// TESTRESPONSE[s/"2017-05-04T22:46:09.675Z"/$body.docs.0.processor_results.1.doc._ingest.timestamp/]
|
|
// TESTRESPONSE[s/"2017-05-04T22:46:09.676Z"/$body.docs.1.processor_results.0.doc._ingest.timestamp/]
|
|
// TESTRESPONSE[s/"2017-05-04T22:46:09.677Z"/$body.docs.1.processor_results.1.doc._ingest.timestamp/]
|
|
|
|
[[accessing-data-in-pipelines]]
|
|
== Accessing Data in Pipelines
|
|
|
|
The processors in a pipeline have read and write access to documents that pass through the pipeline.
|
|
The processors can access fields in the source of a document and the document's metadata fields.
|
|
|
|
[float]
|
|
[[accessing-source-fields]]
|
|
=== Accessing Fields in the Source
|
|
Accessing a field in the source is straightforward. You simply refer to fields by
|
|
their name. For example:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "my_field"
|
|
"value": 582.1
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
On top of this, fields from the source are always accessible via the `_source` prefix:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "_source.my_field"
|
|
"value": 582.1
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[float]
|
|
[[accessing-metadata-fields]]
|
|
=== Accessing Metadata Fields
|
|
You can access metadata fields in the same way that you access fields in the source. This
|
|
is possible because Elasticsearch doesn't allow fields in the source that have the
|
|
same name as metadata fields.
|
|
|
|
The following example sets the `_id` metadata field of a document to `1`:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "_id"
|
|
"value": "1"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The following metadata fields are accessible by a processor: `_index`, `_type`, `_id`, `_routing`.
|
|
|
|
[float]
|
|
[[accessing-ingest-metadata]]
|
|
=== Accessing Ingest Metadata Fields
|
|
Beyond metadata fields and source fields, ingest also adds ingest metadata to the documents that it processes.
|
|
These metadata properties are accessible under the `_ingest` key. Currently ingest adds the ingest timestamp
|
|
under the `_ingest.timestamp` key of the ingest metadata. The ingest timestamp is the time when Elasticsearch
|
|
received the index or bulk request to pre-process the document.
|
|
|
|
Any processor can add ingest-related metadata during document processing. Ingest metadata is transient
|
|
and is lost after a document has been processed by the pipeline. Therefore, ingest metadata won't be indexed.
|
|
|
|
The following example adds a field with the name `received`. The value is the ingest timestamp:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "received"
|
|
"value": "{{_ingest.timestamp}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Unlike Elasticsearch metadata fields, the ingest metadata field name `_ingest` can be used as a valid field name
|
|
in the source of a document. Use `_source._ingest` to refer to the field in the source document. Otherwise, `_ingest`
|
|
will be interpreted as an ingest metadata field.
|
|
|
|
[float]
|
|
[[accessing-template-fields]]
|
|
=== Accessing Fields and Metafields in Templates
|
|
A number of processor settings also support templating. Settings that support templating can have zero or more
|
|
template snippets. A template snippet begins with `{{` and ends with `}}`.
|
|
Accessing fields and metafields in templates is exactly the same as via regular processor field settings.
|
|
|
|
The following example adds a field named `field_c`. Its value is a concatenation of
|
|
the values of `field_a` and `field_b`.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "field_c"
|
|
"value": "{{field_a}} {{field_b}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The following example uses the value of the `geoip.country_iso_code` field in the source
|
|
to set the index that the document will be indexed into:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "_index"
|
|
"value": "{{geoip.country_iso_code}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Dynamic field names are also supported. This example sets the field named after the
|
|
value of `service` to the value of the field `code`:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "{{service}}"
|
|
"value": "{{code}}"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[handling-failure-in-pipelines]]
|
|
== Handling Failures in Pipelines
|
|
|
|
In its simplest use case, a pipeline defines a list of processors that
|
|
are executed sequentially, and processing halts at the first exception. This
|
|
behavior may not be desirable when failures are expected. For example, you may have logs
|
|
that don't match the specified grok expression. Instead of halting execution, you may
|
|
want to index such documents into a separate index.
|
|
|
|
To enable this behavior, you can use the `on_failure` parameter. The `on_failure` parameter
|
|
defines a list of processors to be executed immediately following the failed processor.
|
|
You can specify this parameter at the pipeline level, as well as at the processor
|
|
level. If a processor specifies an `on_failure` configuration, whether
|
|
it is empty or not, any exceptions that are thrown by the processor are caught, and the
|
|
pipeline continues executing the remaining processors. Because you can define further processors
|
|
within the scope of an `on_failure` statement, you can nest failure handling.
|
|
|
|
The following example defines a pipeline that renames the `foo` field in
|
|
the processed document to `bar`. If the document does not contain the `foo` field, the processor
|
|
attaches an error message to the document for later analysis within
|
|
Elasticsearch.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "my first pipeline with handled exceptions",
|
|
"processors" : [
|
|
{
|
|
"rename" : {
|
|
"field" : "foo",
|
|
"target_field" : "bar",
|
|
"on_failure" : [
|
|
{
|
|
"set" : {
|
|
"field" : "error",
|
|
"value" : "field \"foo\" does not exist, cannot rename to \"bar\""
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The following example defines an `on_failure` block on a whole pipeline to change
|
|
the index to which failed documents get sent.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "my first pipeline with handled exceptions",
|
|
"processors" : [ ... ],
|
|
"on_failure" : [
|
|
{
|
|
"set" : {
|
|
"field" : "_index",
|
|
"value" : "failed-{{ _index }}"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Alternatively instead of defining behaviour in case of processor failure, it is also possible
|
|
to ignore a failure and continue with the next processor by specifying the `ignore_failure` setting.
|
|
|
|
In case in the example below the field `foo` doesn't exist the failure will be caught and the pipeline
|
|
continues to execute, which in this case means that the pipeline does nothing.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "my first pipeline with handled exceptions",
|
|
"processors" : [
|
|
{
|
|
"rename" : {
|
|
"field" : "foo",
|
|
"target_field" : "bar",
|
|
"ignore_failure" : true
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The `ignore_failure` can be set on any processor and defaults to `false`.
|
|
|
|
[float]
|
|
[[accessing-error-metadata]]
|
|
=== Accessing Error Metadata From Processors Handling Exceptions
|
|
|
|
You may want to retrieve the actual error message that was thrown
|
|
by a failed processor. To do so you can access metadata fields called
|
|
`on_failure_message`, `on_failure_processor_type`, and `on_failure_processor_tag`. These fields are only accessible
|
|
from within the context of an `on_failure` block.
|
|
|
|
Here is an updated version of the example that you
|
|
saw earlier. But instead of setting the error message manually, the example leverages the `on_failure_message`
|
|
metadata field to provide the error message.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "my first pipeline with handled exceptions",
|
|
"processors" : [
|
|
{
|
|
"rename" : {
|
|
"field" : "foo",
|
|
"to" : "bar",
|
|
"on_failure" : [
|
|
{
|
|
"set" : {
|
|
"field" : "error",
|
|
"value" : "{{ _ingest.on_failure_message }}"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[ingest-processors]]
|
|
== Processors
|
|
|
|
All processors are defined in the following way within a pipeline definition:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"PROCESSOR_NAME" : {
|
|
... processor configuration options ...
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Each processor defines its own configuration parameters, but all processors have
|
|
the ability to declare `tag` and `on_failure` fields. These fields are optional.
|
|
|
|
A `tag` is simply a string identifier of the specific instantiation of a certain
|
|
processor in a pipeline. The `tag` field does not affect the processor's behavior,
|
|
but is very useful for bookkeeping and tracing errors to specific processors.
|
|
|
|
See <<handling-failure-in-pipelines>> to learn more about the `on_failure` field and error handling in pipelines.
|
|
|
|
The <<ingest-info,node info API>> can be used to figure out what processors are available in a cluster.
|
|
The <<ingest-info,node info API>> will provide a per node list of what processors are available.
|
|
|
|
Custom processors must be installed on all nodes. The put pipeline API will fail if a processor specified in a pipeline
|
|
doesn't exist on all nodes. If you rely on custom processor plugins make sure to mark these plugins as mandatory by adding
|
|
`plugin.mandatory` setting to the `config/elasticsearch.yml` file, for example:
|
|
|
|
[source,yaml]
|
|
--------------------------------------------------
|
|
plugin.mandatory: ingest-attachment,ingest-geoip
|
|
--------------------------------------------------
|
|
|
|
A node will not start if either of these plugins are not available.
|
|
|
|
The <<ingest-stats,node stats API>> can be used to fetch ingest usage statistics, globally and on a per
|
|
pipeline basis. Useful to find out which pipelines are used the most or spent the most time on preprocessing.
|
|
|
|
[[append-processor]]
|
|
=== Append Processor
|
|
Appends one or more values to an existing array if the field already exists and it is an array.
|
|
Converts a scalar to an array and appends one or more values to it if the field exists and it is a scalar.
|
|
Creates an array containing the provided values if the field doesn't exist.
|
|
Accepts a single value or an array of values.
|
|
|
|
[[append-options]]
|
|
.Append Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to be appended to
|
|
| `value` | yes | - | The value to be appended
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"append": {
|
|
"field": "field1",
|
|
"value": ["item2", "item3", "item4"]
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[convert-processor]]
|
|
=== Convert Processor
|
|
Converts an existing field's value to a different type, such as converting a string to an integer.
|
|
If the field value is an array, all members will be converted.
|
|
|
|
The supported types include: `integer`, `float`, `string`, `boolean`, and `auto`.
|
|
|
|
Specifying `boolean` will set the field to true if its string value is equal to `true` (ignore case), to
|
|
false if its string value is equal to `false` (ignore case), or it will throw an exception otherwise.
|
|
|
|
Specifying `auto` will attempt to convert the string-valued `field` into the closest non-string type.
|
|
For example, a field whose value is `"true"` will be converted to its respective boolean type: `true`. And
|
|
a value of `"242.15"` will "automatically" be converted to `242.15` of type `float`. If a provided field cannot
|
|
be appropriately converted, the Convert Processor will still process successfully and leave the field value as-is. In
|
|
such a case, `target_field` will still be updated with the unconverted field value.
|
|
|
|
[[convert-options]]
|
|
.Convert Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field whose value is to be converted
|
|
| `target_field` | no | `field` | The field to assign the converted value to, by default `field` is updated in-place
|
|
| `type` | yes | - | The type to convert the existing value to
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"convert": {
|
|
"field" : "foo",
|
|
"type": "integer"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[date-processor]]
|
|
=== Date Processor
|
|
|
|
Parses dates from fields, and then uses the date or timestamp as the timestamp for the document.
|
|
By default, the date processor adds the parsed date as a new field called `@timestamp`. You can specify a
|
|
different field by setting the `target_field` configuration parameter. Multiple date formats are supported
|
|
as part of the same date processor definition. They will be used sequentially to attempt parsing the date field,
|
|
in the same order they were defined as part of the processor definition.
|
|
|
|
[[date-options]]
|
|
.Date options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to get the date from.
|
|
| `target_field` | no | @timestamp | The field that will hold the parsed date.
|
|
| `formats` | yes | - | An array of the expected date formats. Can be a Joda pattern or one of the following formats: ISO8601, UNIX, UNIX_MS, or TAI64N.
|
|
| `timezone` | no | UTC | The timezone to use when parsing the date.
|
|
| `locale` | no | ENGLISH | The locale to use when parsing the date, relevant when parsing month names or week days.
|
|
|======
|
|
|
|
Here is an example that adds the parsed date to the `timestamp` field based on the `initial_date` field:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors" : [
|
|
{
|
|
"date" : {
|
|
"field" : "initial_date",
|
|
"target_field" : "timestamp",
|
|
"formats" : ["dd/MM/yyyy hh:mm:ss"],
|
|
"timezone" : "Europe/Amsterdam"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The `timezone` and `locale` processor parameters are templated. This means that their values can be
|
|
extracted from fields within documents. The example below shows how to extract the locale/timezone
|
|
details from existing fields, `my_timezone` and `my_locale`, in the ingested document that contain
|
|
the timezone and locale values.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors" : [
|
|
{
|
|
"date" : {
|
|
"field" : "initial_date",
|
|
"target_field" : "timestamp",
|
|
"formats" : ["ISO8601"],
|
|
"timezone" : "{{ my_timezone }}",
|
|
"locale" : "{{ my_locale }}"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[date-index-name-processor]]
|
|
=== Date Index Name Processor
|
|
|
|
The purpose of this processor is to point documents to the right time based index based
|
|
on a date or timestamp field in a document by using the <<date-math-index-names, date math index name support>>.
|
|
|
|
The processor sets the `_index` meta field with a date math index name expression based on the provided index name
|
|
prefix, a date or timestamp field in the documents being processed and the provided date rounding.
|
|
|
|
First, this processor fetches the date or timestamp from a field in the document being processed. Optionally,
|
|
date formatting can be configured on how the field's value should be parsed into a date. Then this date,
|
|
the provided index name prefix and the provided date rounding get formatted into a date math index name expression.
|
|
Also here optionally date formatting can be specified on how the date should be formatted into a date math index name
|
|
expression.
|
|
|
|
An example pipeline that points documents to a monthly index that starts with a `myindex-` prefix based on a
|
|
date in the `date1` field:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT _ingest/pipeline/monthlyindex
|
|
{
|
|
"description": "monthly date-time index naming",
|
|
"processors" : [
|
|
{
|
|
"date_index_name" : {
|
|
"field" : "date1",
|
|
"index_name_prefix" : "myindex-",
|
|
"date_rounding" : "M"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
|
|
Using that pipeline for an index request:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT /myindex/_doc/1?pipeline=monthlyindex
|
|
{
|
|
"date1" : "2016-04-25T12:02:01.789Z"
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[continued]
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"_index" : "myindex-2016-04-01",
|
|
"_type" : "_doc",
|
|
"_id" : "1",
|
|
"_version" : 1,
|
|
"result" : "created",
|
|
"_shards" : {
|
|
"total" : 2,
|
|
"successful" : 1,
|
|
"failed" : 0
|
|
},
|
|
"_seq_no" : 0,
|
|
"_primary_term" : 1
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE
|
|
|
|
|
|
The above request will not index this document into the `myindex` index, but into the `myindex-2016-04-01` index because
|
|
it was rounded by month. This is because the date-index-name-processor overrides the `_index` property of the document.
|
|
|
|
To see the date-math value of the index supplied in the actual index request which resulted in the above document being
|
|
indexed into `myindex-2016-04-01` we can inspect the effects of the processor using a simulate request.
|
|
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline" :
|
|
{
|
|
"description": "monthly date-time index naming",
|
|
"processors" : [
|
|
{
|
|
"date_index_name" : {
|
|
"field" : "date1",
|
|
"index_name_prefix" : "myindex-",
|
|
"date_rounding" : "M"
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs": [
|
|
{
|
|
"_source": {
|
|
"date1": "2016-04-25T12:02:01.789Z"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
and the result:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs" : [
|
|
{
|
|
"doc" : {
|
|
"_id" : "_id",
|
|
"_index" : "<myindex-{2016-04-25||/M{yyyy-MM-dd|UTC}}>",
|
|
"_type" : "_type",
|
|
"_source" : {
|
|
"date1" : "2016-04-25T12:02:01.789Z"
|
|
},
|
|
"_ingest" : {
|
|
"timestamp" : "2016-11-08T19:43:03.850+0000"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/2016-11-08T19:43:03.850\+0000/$body.docs.0.doc._ingest.timestamp/]
|
|
|
|
The above example shows that `_index` was set to `<myindex-{2016-04-25||/M{yyyy-MM-dd|UTC}}>`. Elasticsearch
|
|
understands this to mean `2016-04-01` as is explained in the <<date-math-index-names, date math index name documentation>>
|
|
|
|
[[date-index-name-options]]
|
|
.Date index name options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to get the date or timestamp from.
|
|
| `index_name_prefix` | no | - | A prefix of the index name to be prepended before the printed date.
|
|
| `date_rounding` | yes | - | How to round the date when formatting the date into the index name. Valid values are: `y` (year), `M` (month), `w` (week), `d` (day), `h` (hour), `m` (minute) and `s` (second).
|
|
| `date_formats ` | no | yyyy-MM-dd'T'HH:mm:ss.SSSZ | An array of the expected date formats for parsing dates / timestamps in the document being preprocessed. Can be a Joda pattern or one of the following formats: ISO8601, UNIX, UNIX_MS, or TAI64N.
|
|
| `timezone` | no | UTC | The timezone to use when parsing the date and when date math index supports resolves expressions into concrete index names.
|
|
| `locale` | no | ENGLISH | The locale to use when parsing the date from the document being preprocessed, relevant when parsing month names or week days.
|
|
| `index_name_format` | no | yyyy-MM-dd | The format to be used when printing the parsed date into the index name. An valid Joda pattern is expected here.
|
|
|======
|
|
|
|
[[fail-processor]]
|
|
=== Fail Processor
|
|
Raises an exception. This is useful for when
|
|
you expect a pipeline to fail and want to relay a specific message
|
|
to the requester.
|
|
|
|
[[fail-options]]
|
|
.Fail Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `message` | yes | - | The error message of the `FailException` thrown by the processor
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"fail": {
|
|
"message": "an error message"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[foreach-processor]]
|
|
=== Foreach Processor
|
|
|
|
Processes elements in an array of unknown length.
|
|
|
|
All processors can operate on elements inside an array, but if all elements of an array need to
|
|
be processed in the same way, defining a processor for each element becomes cumbersome and tricky
|
|
because it is likely that the number of elements in an array is unknown. For this reason the `foreach`
|
|
processor exists. By specifying the field holding array elements and a processor that
|
|
defines what should happen to each element, array fields can easily be preprocessed.
|
|
|
|
A processor inside the foreach processor works in the array element context and puts that in the ingest metadata
|
|
under the `_ingest._value` key. If the array element is a json object it holds all immediate fields of that json object.
|
|
and if the nested object is a value is `_ingest._value` just holds that value. Note that if a processor prior to the
|
|
`foreach` processor used `_ingest._value` key then the specified value will not be available to the processor inside
|
|
the `foreach` processor. The `foreach` processor does restore the original value, so that value is available to processors
|
|
after the `foreach` processor.
|
|
|
|
Note that any other field from the document are accessible and modifiable like with all other processors. This processor
|
|
just puts the current array element being read into `_ingest._value` ingest metadata attribute, so that it may be
|
|
pre-processed.
|
|
|
|
If the `foreach` processor fails to process an element inside the array, and no `on_failure` processor has been specified,
|
|
then it aborts the execution and leaves the array unmodified.
|
|
|
|
[[foreach-options]]
|
|
.Foreach Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The array field
|
|
| `processor` | yes | - | The processor to execute against each field
|
|
|======
|
|
|
|
Assume the following document:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"values" : ["foo", "bar", "baz"]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
When this `foreach` processor operates on this sample document:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foreach" : {
|
|
"field" : "values",
|
|
"processor" : {
|
|
"uppercase" : {
|
|
"field" : "_ingest._value"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Then the document will look like this after preprocessing:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"values" : ["FOO", "BAR", "BAZ"]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Let's take a look at another example:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"persons" : [
|
|
{
|
|
"id" : "1",
|
|
"name" : "John Doe"
|
|
},
|
|
{
|
|
"id" : "2",
|
|
"name" : "Jane Doe"
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
In this case, the `id` field needs to be removed,
|
|
so the following `foreach` processor is used:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foreach" : {
|
|
"field" : "persons",
|
|
"processor" : {
|
|
"remove" : {
|
|
"field" : "_ingest._value.id"
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
After preprocessing the result is:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"persons" : [
|
|
{
|
|
"name" : "John Doe"
|
|
},
|
|
{
|
|
"name" : "Jane Doe"
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The wrapped processor can have a `on_failure` definition.
|
|
For example, the `id` field may not exist on all person objects.
|
|
Instead of failing the index request, you can use an `on_failure`
|
|
block to send the document to the 'failure_index' index for later inspection:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foreach" : {
|
|
"field" : "persons",
|
|
"processor" : {
|
|
"remove" : {
|
|
"field" : "_value.id",
|
|
"on_failure" : [
|
|
{
|
|
"set" : {
|
|
"field", "_index",
|
|
"value", "failure_index"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
In this example, if the `remove` processor does fail, then
|
|
the array elements that have been processed thus far will
|
|
be updated.
|
|
|
|
Another advanced example can be found in the {plugins}/ingest-attachment-with-arrays.html[attachment processor documentation].
|
|
|
|
|
|
|
|
[[grok-processor]]
|
|
=== Grok Processor
|
|
|
|
Extracts structured fields out of a single text field within a document. You choose which field to
|
|
extract matched fields from, as well as the grok pattern you expect will match. A grok pattern is like a regular
|
|
expression that supports aliased expressions that can be reused.
|
|
|
|
This tool is perfect for syslog logs, apache and other webserver logs, mysql logs, and in general, any log format
|
|
that is generally written for humans and not computer consumption.
|
|
This processor comes packaged with over
|
|
https://github.com/elastic/elasticsearch/tree/master/modules/ingest-common/src/main/resources/patterns[120 reusable patterns].
|
|
|
|
If you need help building patterns to match your logs, you will find the {kibana-ref}/xpack-grokdebugger.html[Grok Debugger] tool quite useful! The Grok Debugger is an {xpack} feature under the Basic License and is therefore *free to use*. The Grok Constructor at <http://grokconstructor.appspot.com/> is also a useful tool.
|
|
|
|
[[grok-basics]]
|
|
==== Grok Basics
|
|
|
|
Grok sits on top of regular expressions, so any regular expressions are valid in grok as well.
|
|
The regular expression library is Oniguruma, and you can see the full supported regexp syntax
|
|
https://github.com/kkos/oniguruma/blob/master/doc/RE[on the Onigiruma site].
|
|
|
|
Grok works by leveraging this regular expression language to allow naming existing patterns and combining them into more
|
|
complex patterns that match your fields.
|
|
|
|
The syntax for reusing a grok pattern comes in three forms: `%{SYNTAX:SEMANTIC}`, `%{SYNTAX}`, `%{SYNTAX:SEMANTIC:TYPE}`.
|
|
|
|
The `SYNTAX` is the name of the pattern that will match your text. For example, `3.44` will be matched by the `NUMBER`
|
|
pattern and `55.3.244.1` will be matched by the `IP` pattern. The syntax is how you match. `NUMBER` and `IP` are both
|
|
patterns that are provided within the default patterns set.
|
|
|
|
The `SEMANTIC` is the identifier you give to the piece of text being matched. For example, `3.44` could be the
|
|
duration of an event, so you could call it simply `duration`. Further, a string `55.3.244.1` might identify
|
|
the `client` making a request.
|
|
|
|
The `TYPE` is the type you wish to cast your named field. `int` and `float` are currently the only types supported for coercion.
|
|
|
|
For example, you might want to match the following text:
|
|
|
|
[source,txt]
|
|
--------------------------------------------------
|
|
3.44 55.3.244.1
|
|
--------------------------------------------------
|
|
|
|
You may know that the message in the example is a number followed by an IP address. You can match this text by using the following
|
|
Grok expression.
|
|
|
|
[source,txt]
|
|
--------------------------------------------------
|
|
%{NUMBER:duration} %{IP:client}
|
|
--------------------------------------------------
|
|
|
|
[[using-grok]]
|
|
==== Using the Grok Processor in a Pipeline
|
|
|
|
[[grok-options]]
|
|
.Grok Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to use for grok expression parsing
|
|
| `patterns` | yes | - | An ordered list of grok expression to match and extract named captures with. Returns on the first expression in the list that matches.
|
|
| `pattern_definitions` | no | - | A map of pattern-name and pattern tuples defining custom patterns to be used by the current processor. Patterns matching existing names will override the pre-existing definition.
|
|
| `trace_match` | no | false | when true, `_ingest._grok_match_index` will be inserted into your matched document's metadata with the index into the pattern found in `patterns` that matched.
|
|
| `ignore_missing` | no | false | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
Here is an example of using the provided patterns to extract out and name structured fields from a string field in
|
|
a document.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"message": "55.3.244.1 GET /index.html 15824 0.043"
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The pattern for this could be:
|
|
|
|
[source,txt]
|
|
--------------------------------------------------
|
|
%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}
|
|
--------------------------------------------------
|
|
|
|
Here is an example pipeline for processing the above document by using Grok:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors": [
|
|
{
|
|
"grok": {
|
|
"field": "message",
|
|
"patterns": ["%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}"]
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
This pipeline will insert these named captures as new fields within the document, like so:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"message": "55.3.244.1 GET /index.html 15824 0.043",
|
|
"client": "55.3.244.1",
|
|
"method": "GET",
|
|
"request": "/index.html",
|
|
"bytes": 15824,
|
|
"duration": "0.043"
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[custom-patterns]]
|
|
==== Custom Patterns and Pattern Files
|
|
|
|
The Grok processor comes pre-packaged with a base set of pattern. These patterns may not always have
|
|
what you are looking for. Pattern have a very basic format. Each entry describes has a name and the pattern itself.
|
|
|
|
You can add your own patterns to a processor definition under the `pattern_definitions` option.
|
|
Here is an example of a pipeline specifying custom pattern definitions:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"description" : "...",
|
|
"processors": [
|
|
{
|
|
"grok": {
|
|
"field": "message",
|
|
"patterns": ["my %{FAVORITE_DOG:dog} is colored %{RGB:color}"]
|
|
"pattern_definitions" : {
|
|
"FAVORITE_DOG" : "beagle",
|
|
"RGB" : "RED|GREEN|BLUE"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[trace-match]]
|
|
==== Providing Multiple Match Patterns
|
|
|
|
Sometimes one pattern is not enough to capture the potential structure of a field. Let's assume we
|
|
want to match all messages that contain your favorite pet breeds of either cats or dogs. One way to accomplish
|
|
this is to provide two distinct patterns that can be matched, instead of one really complicated expression capturing
|
|
the same `or` behavior.
|
|
|
|
Here is an example of such a configuration executed against the simulate API:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline": {
|
|
"description" : "parse multiple patterns",
|
|
"processors": [
|
|
{
|
|
"grok": {
|
|
"field": "message",
|
|
"patterns": ["%{FAVORITE_DOG:pet}", "%{FAVORITE_CAT:pet}"],
|
|
"pattern_definitions" : {
|
|
"FAVORITE_DOG" : "beagle",
|
|
"FAVORITE_CAT" : "burmese"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs":[
|
|
{
|
|
"_source": {
|
|
"message": "I love burmese cats!"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
response:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs": [
|
|
{
|
|
"doc": {
|
|
"_type": "_type",
|
|
"_index": "_index",
|
|
"_id": "_id",
|
|
"_source": {
|
|
"message": "I love burmese cats!",
|
|
"pet": "burmese"
|
|
},
|
|
"_ingest": {
|
|
"timestamp": "2016-11-08T19:43:03.850+0000"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/2016-11-08T19:43:03.850\+0000/$body.docs.0.doc._ingest.timestamp/]
|
|
|
|
Both patterns will set the field `pet` with the appropriate match, but what if we want to trace which of our
|
|
patterns matched and populated our fields? We can do this with the `trace_match` parameter. Here is the output of
|
|
that same pipeline, but with `"trace_match": true` configured:
|
|
|
|
////
|
|
Hidden setup for example:
|
|
[source,js]
|
|
--------------------------------------------------
|
|
POST _ingest/pipeline/_simulate
|
|
{
|
|
"pipeline": {
|
|
"description" : "parse multiple patterns",
|
|
"processors": [
|
|
{
|
|
"grok": {
|
|
"field": "message",
|
|
"patterns": ["%{FAVORITE_DOG:pet}", "%{FAVORITE_CAT:pet}"],
|
|
"trace_match": true,
|
|
"pattern_definitions" : {
|
|
"FAVORITE_DOG" : "beagle",
|
|
"FAVORITE_CAT" : "burmese"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
},
|
|
"docs":[
|
|
{
|
|
"_source": {
|
|
"message": "I love burmese cats!"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
////
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"docs": [
|
|
{
|
|
"doc": {
|
|
"_type": "_type",
|
|
"_index": "_index",
|
|
"_id": "_id",
|
|
"_source": {
|
|
"message": "I love burmese cats!",
|
|
"pet": "burmese"
|
|
},
|
|
"_ingest": {
|
|
"_grok_match_index": "1",
|
|
"timestamp": "2016-11-08T19:43:03.850+0000"
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE[s/2016-11-08T19:43:03.850\+0000/$body.docs.0.doc._ingest.timestamp/]
|
|
|
|
In the above response, you can see that the index of the pattern that matched was `"1"`. This is to say that it was the
|
|
second (index starts at zero) pattern in `patterns` to match.
|
|
|
|
This trace metadata enables debugging which of the patterns matched. This information is stored in the ingest
|
|
metadata and will not be indexed.
|
|
|
|
[[grok-processor-rest-get]]
|
|
==== Retrieving patterns from REST endpoint
|
|
|
|
The Grok Processor comes packaged with its own REST endpoint for retrieving which patterns the processor is packaged with.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
GET _ingest/processor/grok
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
The above request will return a response body containing a key-value representation of the built-in patterns dictionary.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"patterns" : {
|
|
"BACULA_CAPACITY" : "%{INT}{1,3}(,%{INT}{3})*",
|
|
"PATH" : "(?:%{UNIXPATH}|%{WINPATH})",
|
|
...
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
This can be useful to reference as the built-in patterns change across versions.
|
|
|
|
[[gsub-processor]]
|
|
=== Gsub Processor
|
|
Converts a string field by applying a regular expression and a replacement.
|
|
If the field is not a string, the processor will throw an exception.
|
|
|
|
[[gsub-options]]
|
|
.Gsub Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to apply the replacement to
|
|
| `pattern` | yes | - | The pattern to be replaced
|
|
| `replacement` | yes | - | The string to replace the matching patterns with
|
|
| `target_field` | no | `field` | The field to assign the converted value to, by default `field` is updated in-place
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"gsub": {
|
|
"field": "field1",
|
|
"pattern": "\.",
|
|
"replacement": "-"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[join-processor]]
|
|
=== Join Processor
|
|
Joins each element of an array into a single string using a separator character between each element.
|
|
Throws an error when the field is not an array.
|
|
|
|
[[join-options]]
|
|
.Join Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to be separated
|
|
| `separator` | yes | - | The separator character
|
|
| `target_field` | no | `field` | The field to assign the joined value to, by default `field` is updated in-place
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"join": {
|
|
"field": "joined_array_field",
|
|
"separator": "-"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[json-processor]]
|
|
=== JSON Processor
|
|
Converts a JSON string into a structured JSON object.
|
|
|
|
[[json-options]]
|
|
.Json Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to be parsed
|
|
| `target_field` | no | `field` | The field to insert the converted structured object into
|
|
| `add_to_root` | no | false | Flag that forces the serialized json to be injected into the top level of the document. `target_field` must not be set when this option is chosen.
|
|
|======
|
|
|
|
All JSON-supported types will be parsed (null, boolean, number, array, object, string).
|
|
|
|
Suppose you provide this configuration of the `json` processor:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"json" : {
|
|
"field" : "string_source",
|
|
"target_field" : "json_target"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
If the following document is processed:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"string_source": "{\"foo\": 2000}"
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
after the `json` processor operates on it, it will look like:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"string_source": "{\"foo\": 2000}",
|
|
"json_target": {
|
|
"foo": 2000
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
If the following configuration is provided, omitting the optional `target_field` setting:
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"json" : {
|
|
"field" : "source_and_target"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
then after the `json` processor operates on this document:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"source_and_target": "{\"foo\": 2000}"
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
it will look like:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"source_and_target": {
|
|
"foo": 2000
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
This illustrates that, unless it is explicitly named in the processor configuration, the `target_field`
|
|
is the same field provided in the required `field` configuration.
|
|
|
|
[[kv-processor]]
|
|
=== KV Processor
|
|
This processor helps automatically parse messages (or specific event fields) which are of the foo=bar variety.
|
|
|
|
For example, if you have a log message which contains `ip=1.2.3.4 error=REFUSED`, you can parse those automatically by configuring:
|
|
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"kv": {
|
|
"field": "message",
|
|
"field_split": " ",
|
|
"value_split": "="
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[kv-options]]
|
|
.Kv Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to be parsed
|
|
| `field_split` | yes | - | Regex pattern to use for splitting key-value pairs
|
|
| `value_split` | yes | - | Regex pattern to use for splitting the key from the value within a key-value pair
|
|
| `target_field` | no | `null` | The field to insert the extracted keys into. Defaults to the root of the document
|
|
| `include_keys` | no | `null` | List of keys to filter and insert into document. Defaults to including all keys
|
|
| `exclude_keys` | no | `null` | List of keys to exclude from document
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
|
|
[[lowercase-processor]]
|
|
=== Lowercase Processor
|
|
Converts a string to its lowercase equivalent.
|
|
|
|
[[lowercase-options]]
|
|
.Lowercase Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to make lowercase
|
|
| `target_field` | no | `field` | The field to assign the converted value to, by default `field` is updated in-place
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"lowercase": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[remove-processor]]
|
|
=== Remove Processor
|
|
Removes existing fields. If one field doesn't exist, an exception will be thrown.
|
|
|
|
[[remove-options]]
|
|
.Remove Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | Fields to be removed
|
|
|======
|
|
|
|
Here is an example to remove a single field:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"remove": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
To remove multiple fields, you can use the following query:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"remove": {
|
|
"field": ["foo", "bar"]
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[rename-processor]]
|
|
=== Rename Processor
|
|
Renames an existing field. If the field doesn't exist or the new name is already used, an exception will be thrown.
|
|
|
|
[[rename-options]]
|
|
.Rename Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to be renamed
|
|
| `target_field` | yes | - | The new name of the field
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"rename": {
|
|
"field": "foo",
|
|
"target_field": "foobar"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[script-processor]]
|
|
=== Script Processor
|
|
|
|
Allows inline and stored scripts to be executed within ingest pipelines.
|
|
|
|
See <<modules-scripting-using, How to use scripts>> to learn more about writing scripts. The Script Processor
|
|
leverages caching of compiled scripts for improved performance. Since the
|
|
script specified within the processor is potentially re-compiled per document, it is important
|
|
to understand how script caching works. To learn more about
|
|
caching see <<modules-scripting-using-caching, Script Caching>>.
|
|
|
|
[[script-options]]
|
|
.Script Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `lang` | no | "painless" | The scripting language
|
|
| `id` | no | - | The stored script id to refer to
|
|
| `source` | no | - | An inline script to be executed
|
|
| `params` | no | - | Script Parameters
|
|
|======
|
|
|
|
One of `id` or `source` options must be provided in order to properly reference a script to execute.
|
|
|
|
You can access the current ingest document from within the script context by using the `ctx` variable.
|
|
|
|
The following example sets a new field called `field_a_plus_b_times_c` to be the sum of two existing
|
|
numeric fields `field_a` and `field_b` multiplied by the parameter param_c:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"script": {
|
|
"lang": "painless",
|
|
"source": "ctx.field_a_plus_b_times_c = (ctx.field_a + ctx.field_b) * params.param_c",
|
|
"params": {
|
|
"param_c": 10
|
|
}
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
It is possible to use the Script Processor to manipulate document metadata like `_index` and `_type` during
|
|
ingestion. Here is an example of an Ingest Pipeline that renames the index and type to `my_index` no matter what
|
|
was provided in the original index request:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT _ingest/pipeline/my_index
|
|
{
|
|
"description": "use index:my_index and type:_doc",
|
|
"processors": [
|
|
{
|
|
"script": {
|
|
"source": " ctx._index = 'my_index'; ctx._type = '_doc' "
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
|
|
Using the above pipeline, we can attempt to index a document into the `any_index` index.
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
PUT any_index/_doc/1?pipeline=my_index
|
|
{
|
|
"message": "text"
|
|
}
|
|
--------------------------------------------------
|
|
// CONSOLE
|
|
// TEST[continued]
|
|
|
|
The response from the above index request:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"_index": "my_index",
|
|
"_type": "_doc",
|
|
"_id": "1",
|
|
"_version": 1,
|
|
"result": "created",
|
|
"_shards": {
|
|
"total": 2,
|
|
"successful": 1,
|
|
"failed": 0
|
|
},
|
|
"_seq_no": 0,
|
|
"_primary_term": 1,
|
|
}
|
|
--------------------------------------------------
|
|
// TESTRESPONSE
|
|
|
|
In the above response, you can see that our document was actually indexed into `my_index` instead of
|
|
`any_index`. This type of manipulation is often convenient in pipelines that have various branches of transformation,
|
|
and depending on the progress made, indexed into different indices.
|
|
|
|
[[set-processor]]
|
|
=== Set Processor
|
|
Sets one field and associates it with the specified value. If the field already exists,
|
|
its value will be replaced with the provided one.
|
|
|
|
[[set-options]]
|
|
.Set Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to insert, upsert, or update
|
|
| `value` | yes | - | The value to be set for the field
|
|
| `override`| no | true | If processor will update fields with pre-existing non-null-valued field. When set to `false`, such fields will not be touched.
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"set": {
|
|
"field": "field1",
|
|
"value": 582.1
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[split-processor]]
|
|
=== Split Processor
|
|
Splits a field into an array using a separator character. Only works on string fields.
|
|
|
|
[[split-options]]
|
|
.Split Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to split
|
|
| `separator` | yes | - | A regex which matches the separator, eg `,` or `\s+`
|
|
| `target_field` | no | `field` | The field to assign the split value to, by default `field` is updated in-place
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"split": {
|
|
"field": "my_field",
|
|
"separator": "\\s+" <1>
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
<1> Treat all consecutive whitespace characters as a single separator
|
|
|
|
[[sort-processor]]
|
|
=== Sort Processor
|
|
Sorts the elements of an array ascending or descending. Homogeneous arrays of numbers will be sorted
|
|
numerically, while arrays of strings or heterogeneous arrays of strings + numbers will be sorted lexicographically.
|
|
Throws an error when the field is not an array.
|
|
|
|
[[sort-options]]
|
|
.Sort Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to be sorted
|
|
| `order` | no | `"asc"` | The sort order to use. Accepts `"asc"` or `"desc"`.
|
|
| `target_field` | no | `field` | The field to assign the sorted value to, by default `field` is updated in-place
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"sort": {
|
|
"field": "field_to_sort",
|
|
"order": "desc"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[trim-processor]]
|
|
=== Trim Processor
|
|
Trims whitespace from field.
|
|
|
|
NOTE: This only works on leading and trailing whitespace.
|
|
|
|
[[trim-options]]
|
|
.Trim Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The string-valued field to trim whitespace from
|
|
| `target_field` | no | `field` | The field to assign the trimmed value to, by default `field` is updated in-place
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"trim": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[uppercase-processor]]
|
|
=== Uppercase Processor
|
|
Converts a string to its uppercase equivalent.
|
|
|
|
[[uppercase-options]]
|
|
.Uppercase Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to make uppercase
|
|
| `target_field` | no | `field` | The field to assign the converted value to, by default `field` is updated in-place
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"uppercase": {
|
|
"field": "foo"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
[[dot-expand-processor]]
|
|
=== Dot Expander Processor
|
|
|
|
Expands a field with dots into an object field. This processor allows fields
|
|
with dots in the name to be accessible by other processors in the pipeline.
|
|
Otherwise these <<accessing-data-in-pipelines,fields>> can't be accessed by any processor.
|
|
|
|
[[dot-expender-options]]
|
|
.Dot Expand Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to expand into an object field
|
|
| `path` | no | - | The field that contains the field to expand. Only required if the field to expand is part another object field, because the `field` option can only understand leaf fields.
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"dot_expander": {
|
|
"field": "foo.bar"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
For example the dot expand processor would turn this document:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foo.bar" : "value"
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
into:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foo" : {
|
|
"bar" : "value"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
If there is already a `bar` field nested under `foo` then
|
|
this processor merges the `foo.bar` field into it. If the field is
|
|
a scalar value then it will turn that field into an array field.
|
|
|
|
For example, the following document:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foo.bar" : "value2",
|
|
"foo" : {
|
|
"bar" : "value1"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
is transformed by the `dot_expander` processor into:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foo" : {
|
|
"bar" : ["value1", "value2"]
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
If any field outside of the leaf field conflicts with a pre-existing field of the same name,
|
|
then that field needs to be renamed first.
|
|
|
|
Consider the following document:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"foo": "value1",
|
|
"foo.bar": "value2"
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
Then the `foo` needs to be renamed first before the `dot_expander`
|
|
processor is applied. So in order for the `foo.bar` field to properly
|
|
be expanded into the `bar` field under the `foo` field the following
|
|
pipeline should be used:
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"processors" : [
|
|
{
|
|
"rename" : {
|
|
"field" : "foo",
|
|
"target_field" : "foo.bar""
|
|
}
|
|
},
|
|
{
|
|
"dot_expander": {
|
|
"field": "foo.bar"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|
|
|
|
The reason for this is that Ingest doesn't know how to automatically cast
|
|
a scalar field to an object field.
|
|
|
|
[[urldecode-processor]]
|
|
=== URL Decode Processor
|
|
URL-decodes a string
|
|
|
|
[[urldecode-options]]
|
|
.URL Decode Options
|
|
[options="header"]
|
|
|======
|
|
| Name | Required | Default | Description
|
|
| `field` | yes | - | The field to decode
|
|
| `target_field` | no | `field` | The field to assign the converted value to, by default `field` is updated in-place
|
|
| `ignore_missing` | no | `false` | If `true` and `field` does not exist or is `null`, the processor quietly exits without modifying the document
|
|
|======
|
|
|
|
[source,js]
|
|
--------------------------------------------------
|
|
{
|
|
"urldecode": {
|
|
"field": "my_url_to_decode"
|
|
}
|
|
}
|
|
--------------------------------------------------
|
|
// NOTCONSOLE
|