TCB generation occasionally transforms binding expressions twice, which can
result in a `BindingPipe` operation being `resolve()`'d multiple times. When
the pipe does not exist, this caused multiple OOB diagnostics to be recorded
about the missing pipe.
This commit fixes the problem by making the OOB recorder track which pipe
expressions have had diagnostics produced already, and only producing them
once per expression.
PR Close#39517
With this change we remove code which was used to support both TypeScript 3.9 and TypeScript 4.0
This code is now no longer needed because G3 is on TypeScript 4.0
PR Close#39586
There is a compiler transform that downlevels Angular class decorators
to static properties so that metadata is available for JIT compilation.
The transform was supposed to ignore non-Angular decorators but it was
actually completely dropping decorators that did not conform to a very
specific syntactic shape (i.e. the decorator was a simple identifier, or
a namespaced identifier).
This commit ensures that all non-Angular decorators are kepts as-is
even if they are built using a syntax that the Angular compiler does not
understand.
Fixes#39574
PR Close#39577
Rather than re-reading component metadata that was already interpreted
by the Ivy compiler, the Language Service should instead use the
compiler APIs to get information it needs about the metadata.
PR Close#39476
This commit implements partial code generation for directives, which
will be transformed by the linker plugin to fully AOT compiled code in
follow-up work.
PR Close#39518
When a class with a custom decorator is transpiled to ES5, it looks something like this:
```
var SomeClass = (function() {
function SomeClass() {...};
var SomeClass_1 = __decorate([Decorator()], SomeClass);
SomeClass = SomeClass_1;
return SomeClass;
})();
```
The problem is that if the class also has an Angular decorator that refers to the class itself
(e.g. `{provide: someToken, useClass: SomeClass}`), the generated `setClassMetadata` code will
be emitted after the IIFE, but will still refer to the intermediate `SomeClass_1` variable from
inside the IIFE. This happens, because we generate the `setClassMetadata` call directly from
the source AST which contains identifiers that TS will rename when it emits the ES5 code.
These changes resolve the issue by looking through the metadata AST and cloning any `Identifier`
that is referring to the class. Since TS doesn't have references to the clone, it won't rename
it when transpiling to ES5.
Fixes#39509.
PR Close#39527
The variable declaration for a template context is only needed when it
is referenced from somewhere, so the TCB operation to generate the
declaration is marked as optional.
PR Close#39321
Currently expressions `$event.foo()` and `this.$event.foo()`, as well as `$any(foo)` and
`this.$any(foo)`, are treated as the same expression by the compiler, because `this` is considered
the same implicit receiver as when the receiver is omitted. This introduces the following issues:
1. Any time something called `$any` is used, it'll be stripped away, leaving only the first parameter.
2. If something called `$event` is used anywhere in a template, it'll be preserved as `$event`,
rather than being rewritten to `ctx.$event`, causing the value to undefined at runtime. This
applies to listener, property and text bindings.
These changes resolve the first issue and part of the second one by preserving anything that
is accessed through `this`, even if it's one of the "special" ones like `$any` or `$event`.
Furthermore, these changes only expose the `$event` global variable inside event listeners,
whereas previously it was available everywhere.
Fixes#30278.
PR Close#39323
The Language Service is not only interested in external resources, but
also inline styles and templates. By storing the expression of the
inline resources, we can more easily determine if a given position is
part of the inline template/style expression.
PR Close#39482
In addition to the template mapping that already existed, we want to also track the mapping for external
style files. We also store the `ts.Expression` in the registry so external tools can look up a resource
on a component by expression and avoid reading the value.
PR Close#39373
This commit introduces two new methods to the TemplateTypeChecker, which
retrieve the directives and pipes that are "in scope" for a given component
template. The metadata returned by this API is minimal, but enough to power
autocompletion of selectors and attributes in templates.
PR Close#39278
This commit introduces caching of `Symbol`s produced by the template type-
checking infrastructure, in the same way that autocompletion results are
now cached.
PR Close#39278
This commit refactors the previously introduced `getGlobalCompletions()` API
for the template type-checker in a couple ways:
* The return type is adjusted to use a `Map` instead of an array, and
separate out the component context completion position. This allows for a
cleaner integration in the language service.
* A new `CompletionEngine` class is introduced which powers autocompletion
for a single component, and can cache completion results.
* The `CompletionEngine` for each component is itself cached on the
`TemplateTypeCheckerImpl` and is invalidated when the component template
is overridden or reset.
This refactoring simplifies the `TemplateTypeCheckerImpl` class by
extracting the autocompletion logic, enables caching for better performance,
and prepares for the introduction of other autocompletion APIs.
PR Close#39278
The compiler uses a `Reference` abstraction to refer to TS nodes
that it needs to refer to from other parts of the source. Such
references keep track of any identifiers that represent the referenced
node.
Prior to this commit, the compiler (and specifically `ReferenceEmitter`
classes) assumed that the reference identifiers are always free standing.
In other words a reference identifier would be an expression like
`FooDirective` in the expression `class FooDirective {}`.
But in UMD/CommonJS source, a reference can actually refer to an "exports"
declaration of the form `exports.FooDirective = ...`.
In such cases the `FooDirective` identifier is not free-standing
since it is part of a property access, so the `ReferenceEmitter`
should take this into account when emitting an expression that
refers to such a `Reference`.
This commit changes the `LocalIdentifierStrategy` reference emitter
so that if the `node` being referenced is not a declaration itself and
is in the current file, then it should be used directly, rather than
trying to use one of its identifiers.
PR Close#39346
Previously, UMD/CommonJS class inline declarations of the form:
```ts
exports.Foo = (function() { function Foo(); return Foo; })();
```
were capturing the whole IIFE as the implementation, rather than
the inner class (i.e. `function Foo() {}` in this case). This caused
the interpreter to break when it was trying to access such an export,
since it would try to evaluate the IIFE rather than treating it as a class
declaration.
PR Close#39346
This commit adds the basic building blocks for linking partial declarations.
In particular it provides a generic `FileLinker` class that delegates to
a set of (not yet implemented) `PartialLinker` classes.
The Babel plugin makes use of this `FileLinker` providing concrete classes
for `AstHost` and `AstFactory` that work with Babel AST. It can be created
with the following code:
```ts
const plugin = createEs2015LinkerPlugin({ /* options */ });
```
PR Close#39116
Some inline declarations are of the form:
```
exports.<name> = <implementation>;
```
In this case the declaration `node` is `exports.<name>`.
When interpreting such inline declarations we actually want
to visit the `implementation` expression rather than visiting
the declaration `node`.
This commit adds `implementation?: ts.Expression` to the
`InlineDeclaration` type and updates the interpreter to visit
these expressions as described above.
PR Close#39267
Previously the `node.name` property was only checked to ensure it was
defined. But that meant that it was a `ts.BindingName`, which also includes
`ts.BindingPattern`, which we do not support. But these helper methods were
forcefully casting the value to `ts.Identifier.
Now we also check that the `node.name` is actually an `ts.Identifier`.
PR Close#38959
Previously directive "queries" that relied upon a namespaced type
```ts
queries: {
'mcontent': new core.ContentChild('test2'),
}
```
caused an error to be thrown. This is now supported.
PR Close#38959
Previously these tests were checking multiple specific expression
types. The new helper function is more general and will also support
`PropertyAccessExpression` nodes for `InlineDeclaration` types.
PR Close#38959
Previously the `ConcreteDeclaration` and `InlineDeclaration` had
different properties for the underlying node type. And the `InlineDeclaration`
did not store a value that represented its declaration.
It turns out that a natural declaration node for an inline type is the
expression. For example in UMD/CommonJS this would be the `exports.<name>`
property access node.
So this expression is now used for the `node` of `InlineDeclaration` types
and the `expression` property is dropped.
To support this the codebase has been refactored to use a new `DeclarationNode`
type which is a union of `ts.Declaration|ts.Expression` instead of `ts.Declaration`
throughout.
PR Close#38959
Previously `getDeclaration()` would only return the first node that matched
the name passed in and then assert the predicate on this single node.
It also only considered a subset of possible declaration types that we might
care about.
Now the function will parse the whole tree collecting an array of all the
nodes that match the name. It then filters this array based on the predicate
and only errors if the filtered array is empty.
This makes this function much more resilient to more esoteric code formats
such as UMD.
PR Close#38959
There is no need to check that the `ref.node` is of any particular type
because immediately after this check the entry is tested to see if it passes
`isClassDeclarationReference()`.
The only difference is that the error that is reported is slightly different
in the case that it is a `ref` but not one of the TS node types.
Previously:
```
`Value at position ${idx} in the NgModule.${arrayName} of ${
className} is not a reference`
```
now
```
`Value at position ${idx} in the NgModule.${arrayName} of ${
className} is not a class`
```
Arguably the previous message was wrong, since this entry IS a reference
but is not a class.
PR Close#38959
Expressions within ICU expressions in templates were not previously
type-checked, as they were skipped while traversing the elements
within a template. This commit enables type checking of these
expressions by actually visiting the expressions.
BREAKING CHANGE:
Expressions within ICUs are now type-checked again, fixing a regression
in Ivy. This may cause compilation failures if errors are found in
expressions that appear within an ICU. Please correct these expressions
to resolve the type-check errors.
Fixes#39064
PR Close#39072
The right needs to be wrapped in parens or we cannot accurately match its
span to just the RHS. For example, the span in `e = $event /*0,10*/` is ambiguous.
It could refer to either the whole binary expression or just the RHS.
We should instead generate `e = ($event /*0,10*/)` so we know the span 0,10 matches RHS.
This is specifically needed for the TemplateTypeChecker/Language Service
when mapping template positions to items in the TCB.
PR Close#39143
This commit introduces a new API for the `TemplateTypeChecker` which allows
for autocompletion in a global expression context (for example, in a new
interpolation expression such as `{{|}}`). This API returns instances of the
type `GlobalCompletion`, which can represent either a completion result from
the template's component context or a declaration such as a local reference
or template variable. The Language Service will use this API to implement
autocompletion within templates.
PR Close#39048
Previously the value passed to `AstFactory.attachComments()` could be
`undefined` which is counterintuitive, since why attach something that
doesn't exist? Now it expects there to be a defined array. Further it no
longer returns a statement. Both these aspects of the interface were designed
to make the usage simpler but has the result of complicating the implemenation.
The `ExpressionTranslatorVisitor` now has a helper function (`attachComments()`)
to handle `leadingComments` being undefined and also returning the statement.
This keeps the usage in the translator simple, while ensuring that the `AstFactory`
API is not influenced by how it is used.
PR Close#39076
This is needed so that the Language Service can provide the module name
in the quick info for a directive/component.
To accomplish this, the compiler's `LocalModuleScope` is provided to the
`TemplateTypeCheckerImpl`. This will also allow the `TemplateTypeChecker` to
provide more completions in the future, giving it a way to determine all the
directives/pipes/etc. available to a template.
PR Close#39099
The compiler maintains an internal dependency graph of all resource
dependencies for application source files. This information can be useful
for tools that integrate the compiler and need to support file watching.
This change adds a `getResourceDependencies` method to the
`NgCompiler` class that allows compiler integrations to access resource
dependencies of files within the compilation.
PR Close#38048
This commit adds the `AstHost` interface, along with implementations for
both Babel and TS.
It also implements the Babel vesion of the `AstFactory` interface, along
with a linker specific implementation of the `ImportGenerator` interface.
These classes will be used by the new "ng-linker" to transform prelinked
library code using a Babel plugin.
PR Close#38866
The `AstFactory.createFunctionDeclaration()` was allowing `null` to be
passed as the function `name` value. This is not actually possible, since
function declarations must always have a name.
PR Close#38866
The tests were assuming that newlines were `\n` characters but this is not
the case on Windows. This was fixed in #38925, but a better solution is to
configure the TS printer to always use `\n` characters for newlines.
PR Close#38866
These free standing functions rely upon the "current" `FileSystem`,
but it is safer to explicitly pass the `FileSystem` into functions or
classes that need it.
PR Close#39006
This is a precursor to introducing the Angular linker. As an initial
step, a compiler option to configure the compilation mode is introduced.
This option is initially internal until the linker is considered ready.
PR Close#38938
* Add `templateNode` to `ElementSymbol` and `TemplateSymbol` so callers
can use the information about the attributes on the
`TmplAstElement`/`TmplAstTemplate` for directive matching
* Remove helper function `getSymbolOfVariableDeclaration` and favor
more specific handling for scenarios. The generic function did not
easily handle different scenarios for all types of variable declarations
in the TCB
PR Close#39047
This commit adds an API to `NgCompiler`, a method called
`getComponentsWithTemplateFile`. Given a filesystem path to an external
template file, it retrieves a `Set` (actually a `ReadonlySet`) of component
declarations which are using this template. In most cases, this will only be
a single component.
This information is easily determined by the compiler during analysis, but
is hard for a lot of Angular tooling (e.g. the language service) to infer
independently. Therefore, it makes sense to expose this as a compiler API.
PR Close#39002
Prior to this fix, incremental rebuilds could fail to type check due to
missing ambient types from auto-discovered declaration files in @types
directories, or type roots in general. This was caused by the
intermediary `ts.Program` that is created for template type checking,
for which a `ts.CompilerHost` was used which did not implement the
optional `directoryExists` methods. As a result, auto-discovery of types
would not be working correctly, and this would retain into the
`ts.Program` that would be created for an incremental rebuild.
This commit fixes the issue by forcing the custom `ts.CompilerHost` used
for type checking to properly delegate into the original
`ts.CompilerHost`, even for optional methods. This is accomplished using
a base class `DelegatingCompilerHost` which is typed in such a way that
newly introduced `ts.CompilerHost` methods must be accounted for.
Fixes#38979
PR Close#39011
This commit updates the symbols in the TemplateTypeCheck API and methods
for retrieving them:
* Include `isComponent` and `selector` for directives so callers can determine which
attributes on an element map to the matched directives.
* Add a new `TextAttributeSymbol` and return this when requesting a symbol for a `TextAttribute`.
* When requesting a symbol for `PropertyWrite` and `MethodCall`, use the
`nameSpan` to retrieve symbols.
* Add fix to retrieve generic directives attached to elements/templates.
PR Close#38844
Prior to this change, each invocation of `loadStandardTestFiles` would
load the necessary files from disk. This function is typically called
at the top-level of a test module in order to share the result across
tests. The `//packages/compiler-cli/test/ngtsc` target has 8 modules
where this call occurs, each loading their own copy of
`node_modules/typescript` which is ~60MB in size, so the memory overhead
used to be significant. This commit loads the individual packages into
a standalone `Folder` and mounts this folder into the filesystem of
standard test files, such that all file contents are no longer
duplicated in memory.
PR Close#38909
In Ivy, template type-checking has 3 modes: basic, full, and strict. The
primary difference between basic and full modes is that basic mode only
checks the top-level template, whereas full mode descends into nested
templates (embedded views like ngIfs and ngFors). Ivy applies this approach
to all of its template type-checking, including the DOM schema checks which
validate whether an element is a valid component/directive or not.
View Engine has both the basic and the full mode, with the same distinction.
However in View Engine, DOM schema checks happen for the full template even
in the basic mode.
Ivy's behavior here is technically a "fix" as it does not make sense for
some checks to apply to the full template and others only to the top-level
view. However, since g3 relies exclusively on the basic mode of checking and
developers there are used to DOM checks applying throughout their template,
this commit re-enables the nested schema checks even in basic mode only in
g3. This is done by enabling the checks only when Closure Compiler
annotations are requested.
Outside of g3, it's recommended that applications use at least the full mode
of checking (controlled by the `fullTemplateTypeCheck` flag), and ideally
the strict mode (`strictTemplates`).
PR Close#38943
This commit refactors the `ExpressionTranslatorVisitor` so that it
is not tied directly to the TypeScript AST. Instead it uses generic
`TExpression` and `TStatement` types that are then converted
to concrete types by the `TypeScriptAstFactory`.
This paves the way for a `BabelAstFactory` that can be used to
generate Babel AST nodes instead of TypeScript, which will be
part of the new linker tool.
PR Close#38775
Previously each identifier was being imported individually, which made for a
very long import statement, but also obscurred, in the code, which identifiers
came from the compiler.
PR Close#38775
This file contains a number of classes making it long and hard to work with.
This commit splits the `ImportManager`, `Context` and `TypeTranslatorVisitor`
classes, along with associated functions and types into their own files.
PR Close#38775
When the target of the compiler is ES2015 or newer then we should
be generating `let` and `const` variable declarations rather than `var`.
PR Close#38775