Commit Graph

375 Commits

Author SHA1 Message Date
JoostK a7e4db3344 test(compiler-cli): improve compliance test performance (#39956)
The newly built compliance test runner was not using the shared source
file cache that was added in b627f7f02e,
which offers a significant performance boost to the compliance test
targets.

PR Close #39956
2020-12-04 10:17:21 -08:00
Alex Rickabaugh a6c8cc3215 test(compiler-cli): validate broken external template incrementality (#39923)
Previously, if a component had an external template with a hard error, the
compiler would "forget" the link between that component and its NgModule.
Additionally, the NgModule would be marked as being in error, because the
template issue would prevent the compiler from registering the component
class as a component, so from the NgModule it would look like a declaration
of a non-directive/pipe class. As a combined result, the next incremental
step could fix the template error, but would not refresh diagnostics for the
NgModule, leading to an incrementality issue.

The various facets of this problem were fixed in prior commits. This commit
adds a test verifying the above case works now as expected.

PR Close #39923
2020-12-03 13:42:13 -08:00
Alex Rickabaugh 6d42954327 fix(compiler-cli): remove the concept of an errored trait (#39923)
Previously, if a trait's analysis step resulted in diagnostics, the trait
would be considered "errored" and no further operations, including register,
would be performed. Effectively, this meant that the compiler would pretend
the class in question was actually undecorated.

However, this behavior is problematic for several reasons:

1. It leads to inaccurate diagnostics being reported downstream.

For example, if a component is put into the error state, for example due to
a template error, the NgModule which declares the component would produce a
diagnostic claiming that the declaration is neither a directive nor a pipe.
This happened because the compiler wouldn't register() the component trait,
so the component would not be recorded as actually being a directive.

2. It can cause incorrect behavior on incremental builds.

This bug is more complex, but the general issue is that if the compiler
fails to associate a component and its module, then incremental builds will
not correctly re-analyze the module when the component's template changes.
Failing to register the component as such is one link in the larger chain of
issues that result in these kinds of issues.

3. It lumps together diagnostics produced during analysis and resolve steps.

This is not causing issues currently as the dependency graph ensures the
right classes are re-analyzed when needed, instead of showing stale
diagnostics. However, the dependency graph was not intended to serve this
role, and could potentially be optimized in ways that would break this
functionality.

This commit removes the concept of an "errored" trait entirely from the
trait system. Instead, analyzed and resolved traits have corresponding (and
separate) diagnostics, in addition to potentially `null` analysis results.
Analysis (but not resolution) diagnostics are carried forward during
incremental build operations. Compilation (emit) is only performed when
a trait reaches the resolved state with no diagnostics.

This change is functionally different than before as the `register` step is
now performed even in the presence of analysis errors, as long as analysis
results are also produced. This fixes problem 1 above, and is part of the
larger solution to problem 2.

PR Close #39923
2020-12-03 13:42:13 -08:00
Charles Lyding 318255a5f8 build: support building with TypeScript 4.1 (#39571)
TypeScript 4.1 is now used to build and test within the repository.

PR Close #39571
2020-11-25 11:10:01 -08:00
JoostK 453b32f4b9 fix(compiler-cli): report error when a reference target is missing instead of crashing (#39805)
If a template declares a reference to a missing target then referring to
that reference from elsewhere in the template would crash the template
type checker, due to a regression introduced in #38618. This commit
fixes the crash by ensuring that the invalid reference will resolve to
a variable of type any.

Fixes #39744

PR Close #39805
2020-11-24 08:46:37 -08:00
Pete Bacon Darwin 0462a616c3 fix(compiler): ensure that placeholders have the correct sourceSpan (#39717)
When the `preserveWhitespaces` is not true, the template parser will
process the parsed AST nodes to remove excess whitespace. Since the
generated `goog.getMsg()` statements rely upon the AST nodes after
this whitespace is removed, the i18n extraction must make a second pass.

Previously this resulted in innacurrate source-spans for the i18n text and
placeholder nodes that were extracted in the second pass.

This commit fixes this by reusing the source-spans from the first pass
when extracting the nodes in the second pass.

Fixes #39671

PR Close #39717
2020-11-20 08:35:55 -08:00
Pete Bacon Darwin 6b38c44a22 test(compiler-cli): add source-mapping test helper (#39717)
This helper improves the message given when an expectation
fails in a source-mapping test.

PR Close #39717
2020-11-20 08:35:54 -08:00
Alex Rickabaugh 3613e7c4e5 test(compiler-cli): move testing utils to separate package (#39594)
ngtsc has a robust suite of testing utilities, designed for in-memory
testing of a TypeScript compiler. Previously these utilities lived in the
`test` directory for the compiler-cli package.

This commit moves those utilities to an `ngtsc/testing` package, enabling
them to be depended on separately and opening the door for using them from
the upcoming language server testing infrastructure.

As part of this refactoring, the `fake_core` package (a lightweight API
replacement for @angular/core) is expanded to include functionality needed
for Language Service test use cases.

PR Close #39594
2020-11-17 11:59:56 -08:00
Kristiyan Kostadinov a61fe96b70 fix(compiler-cli): incorrectly type checking calls to implicit template variables (#39686)
Currently when we encounter an implicit method call (e.g. `{{ foo(1) }}`) and we manage to resolve
its receiver to something within the template, we assume that the method is on the receiver itself
so we generate a type checking code to reflect it. This assumption is true in most cases, but it
breaks down if the call is on an implicit receiver and the receiver itself is being invoked. E.g.

```
<div *ngFor="let fn of functions">{{ fn(1) }}</div>
```

These changes resolve the issue by generating a regular function call if the method call's receiver
is pointing to `$implicit`.

Fixes #39634.

PR Close #39686
2020-11-16 09:36:10 -08:00
Andrew Scott 7e724add7e refactor(compiler-cli): Add additional key/value spans to TCB (#39665)
In order to more accurately map from a node in the TCB to a template position,
we need to provide more span information in the TCB. These changes are necessary
for the Language Service to map from a TCB node back to a specific
locations in the template for actions like "find references" and
"refactor/rename". After the TS "find references" returns results,
including those in the TCB, we need to map specifically to the matching
key/value spans in the template rather than the entire source span.

This also has the benefit of producing diagnostics which align more
closely with what TypeScript produces.
The following example shows TS code and the diagnostic produced by an invalid assignment to a property:

```
let a: {age: number} = {} as any;
a.age = 'laksjdf';
^^^^^ <-- Type 'string' is not assignable to type 'number'.
```
A corollary to this in a template file would be [age]="'someString'". The diagnostic we currently produce for this is:

```
Type 'number' is not assignable to type 'string'.

1 <app-hello [greeting]="1"></app-hello>
             ~~~~~~~~~~~~~~
```
Notice that the underlined text includes the entire span.
If we included the keySpan for the assignment to the property,
this diagnostic underline would be more similar to the one produced by TypeScript;
that is, it would only underline “greeting”.

[design/discussion doc]
(https://docs.google.com/document/d/1FtaHdVL805wKe4E6FxVTnVHl38lICoHIjS2nThtRJ6I/edit?usp=sharing)

PR Close #39665
2020-11-16 09:33:11 -08:00
Alex Rickabaugh c59f401f9a fix(compiler-cli): setComponentScope should only list used components/pipes (#39662)
ngtsc will avoid emitting generated imports that would create an import
cycle in the user's program. The main way such imports can arise is when
a component would ordinarily reference its dependencies in its component
definition `directiveDefs` and `pipeDefs`. This requires adding imports,
which run the risk of creating a cycle.

When ngtsc detects that adding such an import would cause this to occur, it
instead falls back on a strategy called "remote scoping", where a side-
effectful call to `setComponentScope` in the component's NgModule file is
used to patch `directiveDefs` and `pipeDefs` onto the component. Since the
NgModule file already imports all of the component's dependencies (to
declare them in the NgModule), this approach does not risk adding a cycle.
It has several large downsides, however:

1. it breaks under `sideEffects: false` logic in bundlers including the CLI
2. it breaks tree-shaking for the given component and its dependencies

See this doc for further details: https://hackmd.io/Odw80D0pR6yfsOjg_7XCJg?view

In particular, the impact on tree-shaking was exacerbated by the naive logic
ngtsc used to employ here. When this feature was implemented, at the time of
generating the side-effectful `setComponentScope` call, the compiler did not
know which of the component's declared dependencies were actually used in
its template. This meant that unlike the generation of `directiveDefs` in
the component definition itself, `setComponentScope` calls had to list the
_entire_ compilation scope of the component's NgModule, including directives
and pipes which were not actually used in the template. This made the tree-
shaking impact much worse, since if the component's NgModule made use of any
shared NgModules (e.g. `CommonModule`), every declaration therein would
become un-treeshakable.

Today, ngtsc does have the information on which directives/pipes are
actually used in the template, but this was not being used during the remote
scoping operation. This commit modifies remote scoping to take advantage of
the extra context and only list used dependencies in `setComponentScope`
calls, which should ameliorate the tree-shaking impact somewhat.

PR Close #39662
2020-11-13 11:57:20 -08:00
JoostK 3b0b7d2210 fix(compiler-cli): report missing pipes when `fullTemplateTypeCheck` is disabled (#39320)
Even if `fullTemplateTypeCheck` is disabled should missing pipes still
be reported, as was the case in View Engine.

Fixes #38195

PR Close #39320
2020-10-30 18:01:51 -07:00
Pete Bacon Darwin 2736a43ecb fix(compiler-cli): support namespaced query types in directives (#38959)
Previously directive "queries" that relied upon a namespaced type

```ts
queries: {
  'mcontent': new core.ContentChild('test2'),
}
```

caused an error to be thrown. This is now supported.

PR Close #38959
2020-10-12 08:32:47 -07:00
Pete Bacon Darwin 0accd1e68d refactor(compiler-cli): implement `DeclarationNode` node type (#38959)
Previously the `ConcreteDeclaration` and `InlineDeclaration` had
different properties for the underlying node type. And the `InlineDeclaration`
did not store a value that represented its declaration.

It turns out that a natural declaration node for an inline type is the
expression. For example in UMD/CommonJS this would be the `exports.<name>`
property access node.

So this expression is now used for the `node` of `InlineDeclaration` types
and the `expression` property is dropped.

To support this the codebase has been refactored to use a new `DeclarationNode`
type which is a union of `ts.Declaration|ts.Expression` instead of `ts.Declaration`
throughout.

PR Close #38959
2020-10-12 08:32:46 -07:00
Kristiyan Kostadinov 4a1c12c773 feat(core): remove ViewEncapsulation.Native (#38882)
Removes `ViewEncapsulation.Native` which has been deprecated for several major versions.

BREAKING CHANGES:
* `ViewEncapsulation.Native` has been removed. Use `ViewEncapsulation.ShadowDom` instead. Existing
usages will be updated automatically by `ng update`.

PR Close #38882
2020-10-08 11:56:03 -07:00
JoostK 06525cfed3 test(compiler-cli): fix tests to have at least one component (#39011)
With the introduction of incremental type checking in #36211, an
intermediate `ts.Program` for type checking is only created if there are
any templates to check. This rendered some tests ineffective at avoiding
regressions, as the intermediate `ts.Program` was required for the tests
to fail if the scenario under test would not be accounted for. This
commit adds a single component to these tests, to ensure the
intermediate `ts.Program` is in fact created.

PR Close #39011
2020-09-28 16:27:34 -04:00
JoostK e9a8f9f705 fix(compiler-cli): enable @types discovery in incremental rebuilds (#39011)
Prior to this fix, incremental rebuilds could fail to type check due to
missing ambient types from auto-discovered declaration files in @types
directories, or type roots in general. This was caused by the
intermediary `ts.Program` that is created for template type checking,
for which a `ts.CompilerHost` was used which did not implement the
optional `directoryExists` methods. As a result, auto-discovery of types
would not be working correctly, and this would retain into the
`ts.Program` that would be created for an incremental rebuild.

This commit fixes the issue by forcing the custom `ts.CompilerHost` used
for type checking to properly delegate into the original
`ts.CompilerHost`, even for optional methods. This is accomplished using
a base class `DelegatingCompilerHost` which is typed in such a way that
newly introduced `ts.CompilerHost` methods must be accounted for.

Fixes #38979

PR Close #39011
2020-09-28 16:27:34 -04:00
JoostK b627f7f02e test(compiler-cli): improve test performance using shared source file cache (#38909)
Some compiler tests take a long time to run, even using multiple
executors. A profiling session revealed that most time is spent in
parsing source files, especially the default libraries are expensive to
parse.

The default library files are constant across all tests, so this commit
introduces a shared cache of parsed source files of the default
libraries. This achieves a significant improvement for several targets
on my machine:

//packages/compiler-cli/test/compliance: from 23s to 5s.
//packages/compiler-cli/test/ngtsc: from 115s to 11s.

Note that the number of shards for the compliance tests has been halved,
as the extra shards no longer provide any speedup.

PR Close #38909
2020-09-25 14:28:49 -04:00
Alex Rickabaugh 40975e06c6 fix(compiler-cli): perform DOM schema checks even in basic mode in g3 (#38943)
In Ivy, template type-checking has 3 modes: basic, full, and strict. The
primary difference between basic and full modes is that basic mode only
checks the top-level template, whereas full mode descends into nested
templates (embedded views like ngIfs and ngFors). Ivy applies this approach
to all of its template type-checking, including the DOM schema checks which
validate whether an element is a valid component/directive or not.

View Engine has both the basic and the full mode, with the same distinction.
However in View Engine, DOM schema checks happen for the full template even
in the basic mode.

Ivy's behavior here is technically a "fix" as it does not make sense for
some checks to apply to the full template and others only to the top-level
view. However, since g3 relies exclusively on the basic mode of checking and
developers there are used to DOM checks applying throughout their template,
this commit re-enables the nested schema checks even in basic mode only in
g3. This is done by enabling the checks only when Closure Compiler
annotations are requested.

Outside of g3, it's recommended that applications use at least the full mode
of checking (controlled by the `fullTemplateTypeCheck` flag), and ideally
the strict mode (`strictTemplates`).

PR Close #38943
2020-09-23 15:46:32 -04:00
JoostK a32a317ea1 fix(compiler-cli): ensure that a declaration is available in type-to-value conversion (#38684)
The type-to-value conversion could previously crash if a symbol was
resolved that does not have any declarations, e.g. because it's imported
from a missing module. This would typically result in a semantic
TypeScript diagnostic and halt further compilation, therefore not
reaching the type-to-value conversion logic. In Bazel however, it turns
out that Angular semantic diagnostics are requested even if there are
semantic TypeScript errors in the program, so it would then reach the
type-to-value conversation and crash.

This commit fixes the unsafe access and adds a test that ignores the
TypeScript semantic error, effectively replicating the situation as
experienced under Bazel.

Fixes #38670

PR Close #38684
2020-09-08 14:06:25 -07:00
Pete Bacon Darwin 7e0b3fd953 fix(compiler-cli): compute source-mappings for localized strings (#38645)
Previously, localized strings had very limited or incorrect source-mapping
information available.

Now the i18n AST nodes and related output AST nodes include source-span
information about message-parts and placeholders - including closing tag
placeholders.

This information is then used when generating the final localized string
ASTs to ensure that the correct source-mapping is rendered.

See #38588 (comment)

PR Close #38645
2020-09-08 13:17:21 -07:00
Alex Rickabaugh c90eb5450d refactor(compiler-cli): make template parsing errors into diagnostics (#38576)
Previously, the compiler was not able to display template parsing errors as
true `ts.Diagnostic`s that point inside the template. Instead, it would
throw an actual `Error`, and "crash" with a stack trace containing the
template errors.

Not only is this a poor user experience, but it causes the Language Service
to also crash as the user is editing a template (in actuality the LS has to
work around this bug).

With this commit, such parsing errors are converted to true template
diagnostics with appropriate span information to be displayed contextually
along with all other diagnostics. This majorly improves the user experience
and unblocks the Language Service from having to deal with the compiler
"crashing" to report errors.

PR Close #38576
2020-09-03 14:02:35 -07:00
Pete Bacon Darwin 1d8c5d88cd refactor(compiler): `element.sourceSpan` should span the `outerHTML` (#38581)
Previously, the `sourceSpan` and `startSourceSpan` were the same
object, which meant that you had the following situation:

```
element = <div>some content</div>
sourceSpan = <div>
startSourceSpan = <div>
endSourceSpan = </div>
```

This made `sourceSpan` redundant and meant that if you
wanted a span for the whole element including its content
and closing tag, it had to be computed.

Now `sourceSpan` is separated from `startSourceSpan`
resulting in:

```
element = <div>some content</div>
sourceSpan = <div>some content</div>
startSourceSpan = <div>
endSourceSpan = </div>
```

PR Close #38581
2020-09-02 14:47:31 -07:00
crisbeto f5a148b1b7 fix(compiler): incorrectly inferring namespace for HTML nodes inside SVG (#38477)
The HTML parser gets an element's namespace either from the tag name
(e.g. `<svg:rect>`) or from its parent element `<svg><rect></svg>`) which
breaks down when an element is inside of an SVG `foreignElement`,
because foreign elements allow nodes from a different namespace to be
inserted into an SVG.

These changes add another flag to the tag definitions which tells child
nodes whether to try to inherit their namespaces from their parents.
It also adds a definition for `foreignObject` with the new flag,
allowing elements placed inside it to infer their namespaces instead.

Fixes #37218.

PR Close #38477
2020-08-31 13:25:38 -07:00
Alan Agius 0fc44e0436 feat(compiler-cli): add support for TypeScript 4.0 (#38076)
With this change we add support for TypeScript 4.0

PR Close #38076
2020-08-24 13:06:59 -07:00
crisbeto e7da4040d6 fix(compiler-cli): adding references to const enums in runtime code (#38542)
We had a couple of places where we were assuming that if a particular
symbol has a value, then it will exist at runtime. This is true in most cases,
but it breaks down for `const` enums.

Fixes #38513.

PR Close #38542
2020-08-21 12:23:21 -07:00
Andrew Scott 71138f6004 feat(compiler-cli): Add compiler option to report errors when assigning to restricted input fields (#38249)
The compiler does not currently report errors when there's an `@Input()`
for a `private`, `protected`, or `readonly` directive/component class member.
This change adds an option to enable reporting errors when a template
attempts to bind to one of these restricted input fields.

PR Close #38249
2020-08-11 09:55:48 -07:00
JoostK fa0104017a refactor(compiler-cli): only use type constructors for directives with generic types (#38249)
Prior to this change, the template type checker would always use a
type-constructor to instantiate a directive. This type-constructor call
serves two purposes:

1. Infer any generic types for the directive instance from the inputs
   that are passed in.
2. Type check the inputs that are passed into the directive's inputs.

The first purpose is only relevant when the directive actually has any
generic types and using a type-constructor for these cases inhibits
a type-check performance penalty, as a type-constructor's signature is
quite complex and needs to be generated for each directive.

This commit refactors the generated type-check blocks to only generate
a type-constructor call for directives that have generic types. Type
checking of inputs is achieved by generating individual statements for
all inputs, using assignments into the directive's fields.

Even if a type-constructor is used for type-inference of generic types
will the input checking also be achieved using the individual assignment
statements. This is done to support the rework of the language service,
which will start to extract symbol information from the type-check
blocks.

As a future optimization, it may be possible to reduce the number of
inputs passed into a type-constructor to only those inputs that
contribute the the type-inference of the generics. As this is not a
necessity at the moment this is left as follow-up work.

Closes #38185

PR Close #38249
2020-08-11 09:55:48 -07:00
JoostK 18098d38b8 fix(compiler-cli): avoid creating value expressions for symbols from type-only imports (#37912)
In TypeScript 3.8 support was added for type-only imports, which only brings in
the symbol as a type, not their value. The Angular compiler did not yet take
the type-only keyword into account when representing symbols in type positions
as value expressions. The class metadata that the compiler emits would include
the value expression for its parameter types, generating actual imports as
necessary. For type-only imports this should not be done, as it introduces an
actual import of the module that was originally just a type-only import.

This commit lets the compiler deal with type-only imports specially, preventing
a value expression from being created.

Fixes #37900

PR Close #37912
2020-08-11 09:53:25 -07:00
JoostK 7525f3afc1 fix(compiler-cli): type-check inputs that include undefined when there's coercion members (#38273)
For attribute bindings that target a directive's input, the template
type checker is able to verify that the type of the input expression is
compatible with the directive's declaration for said input. This
checking adheres to the `strictNullChecks` flag as configured in the
TypeScript compilation, such that errors are reported for expressions
that include `undefined` or `null` in their type if the input's
declaration does not include those types.

There was a bug with this level of type-checking for directives that
also declare coercion members, where binding an expression that includes
the `undefined` type to a directive's input that does not include the
`undefined` type would not be reported as error.

This commit fixes the bug by changing the type-constructor in type-check
code to use an intersection type of regular inputs and coerced inputs,
instead of a union type. The union type would inadvertently allow
`undefined` types to be assigned into the regular inputs, as that would
still satisfy the characteristics of a union type.

As a result of this change, you may start to see build failures if
`strictTemplates` is enabled and `strictInputTypes` is not disabled.
These errors are legitimate and some action is required to achieve a
successful build:

1. Update the templates for which an error is reported and introduce the
   non-null assertion operator at the end of the expression. This
   removes the `undefined` type from the expression's type, making it
   appear as a valid assignment.
2. Disable `strictNullInputTypes` in the compiler options. This will
   implicitly add the non-null assertion operators similar to option 1,
   but all templates in the compilation are affected.
3. Update the directive's input declaration to include the `undefined`
   type, if the directive is not implemented in an external library.

PR Close #38273
2020-08-06 15:21:02 -07:00
Doug Parker dca4443a8e fix(compiler-cli): mark eager `NgModuleFactory` construction as not side effectful (#38320)
Roll forward of #38147.

This allows Closure compiler to tree shake unused constructor calls to `NgModuleFactory`, which is otherwise considered
side-effectful. The Angular compiler generates factory objects which are exported but typically not used, as they are
only needed for compatibility with View Engine. This results in top-level constructor calls, such as:

```typescript
export const FooNgFactory = new NgModuleFactory(Foo);
```

`NgModuleFactory` has a side-effecting constructor, so this statement cannot be tree shaken, even if `FooNgFactory` is
never imported. The `NgModuleFactory` continues to reference its associated `NgModule` and prevents the module and all
its unused dependencies from being tree shaken, making Closure builds significantly larger than necessary.

The fix here is to wrap `NgModuleFactory` constructor with `noSideEffects(() => /* ... */)`, which tricks the Closure
compiler into assuming that the invoked function has no side effects. This allows it to tree-shake unused
`NgModuleFactory()` constructors when they aren't imported. Since the factory can be removed, the module can also be
removed (if nothing else references it), thus tree shaking unused dependencies as expected.

The one notable edge case is for lazy loaded modules. Internally, lazy loading is done as a side effect when the lazy
script is evaluated. For Angular, this side effect is registering the `NgModule`. In Ivy this is done by the
`NgModuleFactory` constructor, so lazy loaded modules **cannot** have their top-level `NgModuleFactory` constructor
call tree shaken. We handle this case by looking for the `id` field on `@NgModule` annotations. All lazy loaded modules
include an `id`. When this `id` is found, the `NgModuleFactory` is generated **without** with `noSideEffects()` call,
so Closure will not tree shake it and the module will lazy-load correctly.

PR Close #38320
2020-08-06 09:02:16 -07:00
Charles Lyding 6f6102d8ad fix(compiler): add PURE annotation to getInheritedFactory calls (#38291)
Currently the `getInheritedFactory` function is implemented to allow
closure to remove the call if the base factory is unused.  However, this
method does not work with terser.  By adding the PURE annotation,
terser will also be able to remove the call when unused.

PR Close #38291
2020-07-30 16:53:52 -07:00
Alex Rickabaugh 3a525d196b Revert "fix(compiler): mark `NgModuleFactory` construction as not side effectful (#38147)" (#38303)
This reverts commit 7f8c2225f2.

This commit caused test failures internally, which were traced back to the
optimizer removing NgModuleFactory constructor calls when those calls caused
side-effectful registration of NgModules by their ids.

PR Close #38303
2020-07-30 12:19:35 -07:00
Doug Parker 7f8c2225f2 fix(compiler): mark `NgModuleFactory` construction as not side effectful (#38147)
This allows Closure compiler to tree shake unused constructor calls to `NgModuleFactory`, which is otherwise considered
side-effectful. The Angular compiler generates factory objects which are exported but typically not used, as they are
only needed for compatibility with View Engine. This results in top-level constructor calls, such as:

```typescript
export const FooNgFactory = new NgModuleFactory(Foo);
```

`NgModuleFactory` has a side-effecting constructor, so this statement cannot be tree shaken, even if `FooNgFactory` is
never imported. The `NgModuleFactory` continues to reference its associated `NgModule` and prevents the module and all
its unused dependencies from being tree shaken. This effectively prevents all components from being tree shaken, making
Closure builds significantly larger than they should be.

The fix here is to wrap `NgModuleFactory` constructor with `noSideEffects(() => /* ... */)`, which tricks the Closure
compiler into assuming that the invoked function has no side effects. This allows it to tree-shake unused
`NgModuleFactory()` constructors when they aren't imported. Since the factory can be removed, the module can also be
removed (if nothing else references it), thus tree shaking unused components as expected.

PR Close #38147
2020-07-29 13:32:08 -07:00
Doug Parker 887c350f9d refactor(compiler): wrap large strings in function (#38253)
Large strings constants are now wrapped in a function which is called whenever used. This works around a unique
limitation of Closure, where it will **always** inline string literals at **every** usage, regardless of how large the
string literal is or how many times it is used.The workaround is to use a function rather than a string literal.
Closure has differently inlining semantics for functions, where it will check the length of the function and the number
of times it is used before choosing to inline it. By using a function, `ngtsc` makes Closure more conservative about
inlining large strings, and avoids blowing up the bundle size.This optimization is only used if the constant is a large
string. A wrapping function is not included for other use cases, since it would just increase the bundle size and add
unnecessary runtime performance overhead.

PR Close #38253
2020-07-29 13:31:03 -07:00
Andrea Canciani 9c8bc4a239 fix(common): narrow `NgIf` context variables in template type checker (#36627)
When the `NgIf` directive is used in a template, its context variables
can be used to capture the bound value. This is sometimes used in
complex expressions, where the resulting value is captured in a
context variable. There's two syntax forms available:

1. Binding to `NgIfContext.ngIf` using the `as` syntax:
```html
<span *ngIf="enabled && user as u">{{u.name}}</span>
```

2. Binding to `NgIfContext.$implicit` using the `let` syntax:
```html
<span *ngIf="enabled && user; let u">{{u.name}}</span>
```

Because of the semantics of `ngIf`, it is known that the captured
context variable is truthy, however the template type checker
would not consider them as such and still report errors when
`strict` is enabled.

This commit updates `NgIf`'s context guard to make the types of the
context variables truthy, avoiding the issue.

Based on https://github.com/angular/angular/pull/35125

PR Close #36627
2020-07-29 10:30:44 -07:00
Andrew Kushnir 8e5969bb52 fix(compiler): share identical stylesheets between components in the same file (#38213)
Prior to this commit, duplicated styles defined in multiple components in the same file were not
shared between components, thus causing extra payload size. This commit updates compiler logic to
use `ConstantPool` for the styles (while generating the `styles` array on component def), which
enables styles sharing when needed (when duplicates styles are present).

Resolves #38204.

PR Close #38213
2020-07-27 10:04:30 -07:00
Pete Bacon Darwin 6b311552f0 fix(compiler-cli): ensure file_system handles mixed Windows drives (#37959)
The `fs.relative()` method assumed that the file-system is a single tree,
which is not the case in Windows, where you can have multiple drives,
e.g. `C:`, `D:` etc.

This commit changes `fs.relative()` so that it no longer forces the result
to be a `PathSegment` and then flows that refactoring through the rest of
the compiler-cli (and ngcc).  The main difference is that now, in some cases,
we needed to check whether the result is "rooted", i.e an `AbsoluteFsPath`,
rather than a `PathSegment`, before using it.

Fixes #36777

PR Close #37959
2020-07-13 12:05:21 -07:00
crisbeto 9322b9a060 fix(compiler): check more cases for pipe usage inside host bindings (#37883)
Builds on top of #34655 to support more cases that could be using a pipe inside host bindings (e.g. ternary expressions or function calls).

Fixes #37610.

PR Close #37883
2020-07-10 11:00:20 -07:00
JoostK 712f1bd0b7 feat(compiler-cli): explain why an expression cannot be used in AOT compilations (#37587)
During AOT compilation, the value of some expressions need to be known at
compile time. The compiler has the ability to statically evaluate expressions
the best it can, but there can be occurrences when an expression cannot be
evaluated statically. For instance, the evaluation could depend on a dynamic
value or syntax is used that the compiler does not understand. Alternatively,
it is possible that an expression could be statically evaluated but the
resulting value would be of an incorrect type.

In these situations, it would be helpful if the compiler could explain why it
is unable to evaluate an expression. To this extend, the static interpreter
in Ivy keeps track of a trail of `DynamicValue`s which follow the path of nodes
that were considered all the way to the node that causes an expression to be
considered dynamic. Up until this commit, this rich trail of information was
not surfaced to a developer so the compiler was of little help to explain
why static evaluation failed, resulting in situations that are hard to debug
and resolve.

This commit adds much more insight to the diagnostic that is produced for static
evaluation errors. For dynamic values, the trail of `DynamicValue` instances
is presented to the user in a meaningful way. If a value is available but not
of the correct type, the type of the resolved value is shown.

Resolves FW-2155

PR Close #37587
2020-06-25 14:16:35 -07:00
Alex Rickabaugh 5103d908c8 perf(compiler-cli): fix regressions in incremental program reuse (#37641)
Commit 4213e8d5 introduced shim reference tagging into the compiler, and
changed how the `TypeCheckProgramHost` worked under the hood during the
creation of a template type-checking program. This work enabled a more
incremental flow for template type-checking, but unintentionally introduced
several regressions in performance, caused by poor incrementality during
`ts.Program` creation.

1. The `TypeCheckProgramHost` was made to rely on the `ts.CompilerHost` to
   retrieve instances of `ts.SourceFile`s from the original program. If the
   host does not return the original instance of such files, but instead
   creates new instances, this has two negative effects: it incurs
   additional parsing time, and it interferes with TypeScript's ability to
   reuse information about such files.

2. During the incremental creation of a `ts.Program`, TypeScript compares
   the `referencedFiles` of `ts.SourceFile` instances from the old program
   with those in the new program. If these arrays differ, TypeScript cannot
   fully reuse the old program. The implementation of reference tagging
   introduced in 4213e8d5 restores the original `referencedFiles` array
   after a `ts.Program` is created, which means that future incremental
   operations involving that program will always fail this comparison,
   effectively limiting the incrementality TypeScript can achieve.

Problem 1 exacerbates problem 2: if a new `ts.SourceFile` is created by the
host after shim generation has been disabled, it will have an untagged
`referencedFiles` array even if the original file's `referencedFiles` was
not restored, triggering problem 2 when creating the template type-checking
program.

To fix these issues, `referencedFiles` arrays are now restored on the old
`ts.Program` prior to the creation of a new incremental program. This allows
TypeScript to get the most out of reusing the old program's data.

Additionally, the `TypeCheckProgramHost` now uses the original `ts.Program`
to retrieve original instances of `ts.SourceFile`s where possible,
preventing issues when a host would otherwise return fresh instances.

Together, these fixes ensure that program reuse is as incremental as
possible, and tests have been added to verify this for certain scenarios.

An optimization was further added to prevent the creation of a type-checking
`ts.Program` in the first place if no type-checking is necessary.

PR Close #37641
2020-06-25 14:12:20 -07:00
Paul Gschwendtner 97dc85ba5e feat(core): support injection token as predicate in queries (#37506)
Currently Angular internally already handles `InjectionToken` as
predicates for queries. This commit exposes this as public API as
developers already relied on this functionality but currently use
workarounds to satisfy the type constraints (e.g. `as any`).

We intend to make this public as it's low-effort to support, and
it's a significant key part for the use of light-weight tokens as
described in the upcoming guide: https://github.com/angular/angular/pull/36144.

In concrete, applications might use injection tokens over classes
for both optional DI and queries, because otherwise such references
cause classes to be always retained. This was also an issue in View
Engine, but now with Ivy, this pattern became worse, as factories are
directly attached to retained classes (ultimately ending up in the
production bundle, while being unused).

More details in the light-weight token guide and in: https://github.com/angular/angular-cli/issues/16866.

Closes #21152. Related to #36144.

PR Close #37506
2020-06-11 13:21:11 -07:00
Alex Rickabaugh 965a688c97 fix(compiler-cli): use ModuleWithProviders type if static eval fails (#37126)
When the compiler encounters a function call within an NgModule imports
section, it attempts to resolve it to an NgModule-annotated class by
looking at the function body and evaluating the statements there. This
evaluation can only understand simple functions which have a single
return statement as their body. If the function the user writes is more
complex than that, the compiler won't be able to understand it and
previously the PartialEvaluator would return a "DynamicValue" for
that import.

With this change, in the event the function body resolution fails the
PartialEvaluator will now attempt to use its foreign function resolvers to
determine the correct result from the function's type signtaure instead. If
the function is annotated with a correct ModuleWithProviders type, the
compiler will be able to understand the import without static analysis of
the function body.

PR Close #37126
2020-06-03 13:23:16 -07:00
Joey Perrott d1ea1f4c7f build: update license headers to reference Google LLC (#37205)
Update the license headers throughout the repository to reference Google LLC
rather than Google Inc, for the required license headers.

PR Close #37205
2020-05-26 14:26:58 -04:00
Alan Agius 13ba84731f build: prepare for TypeScript 3.9 (#36989)
- Fix several compilation errors
- Update @microsoft/api-extractor to be compatible with TypeScript 3.9

PR Close #36989
2020-05-14 10:50:28 -07:00
Ayaz Hafiz eb34aa551a feat(compiler): add name spans for property reads and method calls (#36826)
ASTs for property read and method calls contain information about
the entire span of the expression, including its receiver. Use cases
like a language service and compile error messages may be more
interested in the span of the direct identifier for which the
expression is constructed (i.e. an accessed property). To support this,
this commit adds a `nameSpan` property on

- `PropertyRead`s
- `SafePropertyRead`s
- `PropertyWrite`s
- `MethodCall`s
- `SafeMethodCall`s

The `nameSpan` property already existed for `BindingPipe`s.

This commit also updates usages of these expressions' `sourceSpan`s in
Ngtsc and the langauge service to use `nameSpan`s where appropriate.

PR Close #36826
2020-05-08 14:42:42 -07:00
Alex Rickabaugh 42d1091d6a fix(compiler-cli): don't try to tag non-ts files as shims (#36987)
Some projects include .js source files (via the TypeScript allowJs option).
Previously, the compiler would attempt to tag these files for shims, which
caused errors as the regex used to create shim filenames assumes a .ts file.
This commit fixes the bug by filtering out non-ts files during tagging.

PR Close #36987
2020-05-07 14:45:05 -07:00
Paul Gschwendtner 4c92cf43cf feat(compiler-cli): report error if undecorated class with Angular features is discovered (#36921)
Previously in v9, we deprecated the pattern of undecorated base classes
that rely on Angular features. We ran a migration for this in version 9
and will run the same on in version 10 again.

To ensure that projects do not regress and start using the unsupported
pattern again, we report an error in ngtsc if such undecorated classes
are discovered.

We keep the compatibility code enabled in ngcc so that libraries
can be still be consumed, even if they have not been migrated yet.

Resolves FW-2130.

PR Close #36921
2020-05-06 15:06:10 -07:00
Igor Minar d578ab8f3c build: simplify package.jsons for all of our packages (#36944)
We can remove all of the entry point resolution configuration from the package.json
in our source code as ng_package rule adds the properties automatically and correctly
configures them.

This change simplifies our code base but doesn't have any impact on the package.json
in the distributed npm_packages.

PR Close #36944
2020-05-06 13:54:26 -07:00
Alex Rickabaugh ecffc3557f perf(compiler-cli): perform template type-checking incrementally (#36211)
This optimization builds on a lot of prior work to finally make type-
checking of templates incremental.

Incrementality requires two main components:
- the ability to reuse work from a prior compilation.
- the ability to know when changes in the current program invalidate that
  prior work.

Prior to this commit, on every type-checking pass the compiler would
generate new .ngtypecheck files for each original input file in the program.

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked.

3. (Build #2 main program): throw away old .ngtypecheck files and generate
   new empty ones.

4. (Build #2 type-check program): same as step 2.

With this commit, the `IncrementalDriver` now tracks template type-checking
_metadata_ for each input file. The metadata contains information about
source mappings for generated type-checking code, as well as some
diagnostics which were discovered at type-check analysis time. The actual
type-checking code is stored in the TypeScript AST for type-checking files,
which is now re-used between programs as follows:

1. (Build #1 main program): empty .ngtypecheck files generated for each
   original input file.

2. (Build #1 type-check program): .ngtypecheck contents overridden for those
   which have corresponding components that need type-checked, and the
   metadata registered in the `IncrementalDriver`.

3. (Build #2 main program): The `TypeCheckShimGenerator` now reuses _all_
   .ngtypecheck `ts.SourceFile` shims from build #1's type-check program in
   the construction of build #2's main program. Some of the contents of
   these files might be stale (if a component's template changed, for
   example), but wholesale reuse here prevents unnecessary changes in the
   contents of the program at this point and makes TypeScript's job a lot
   easier.

4. (Build #2 type-check program): For those input files which have not
   "logically changed" (meaning components within are semantically the same
   as they were before), the compiler will re-use the type-check file
   metadata from build #1, and _not_ generate a new .ngtypecheck shim.
   For components which have logically changed or where the previous
   .ngtypecheck contents cannot otherwise be reused, code generation happens
   as before.

PR Close #36211
2020-05-05 18:40:42 -07:00