A quirk of the Angular template parser is that when parsing templates in the
"default" mode, with options specified by the user, the source mapping
information in the template AST may be inaccurate. As a result, the compiler
parses the template twice: once for "emit" and once to produce an AST with
accurate sourcemaps for diagnostic production.
Previously, only the first parse was performed during analysis. The second
parse occurred during the template type-checking phase, just in time to
produce the template type-checking file.
However, with the reuse of analysis results during incremental builds, it
makes more sense to do the diagnostic parse eagerly during analysis so that
the work isn't unnecessarily repeated in subsequent builds. This commit
refactors the `ComponentDecoratorHandler` to do both parses eagerly, which
actually cleans up some complexity around template parsing as well.
PR Close#34334
During TypeScript module resolution, a lot of filesystem requests are
done. This is quite an expensive operation, so a module resolution cache
can be used to speed up the process significantly.
This commit lets the Ivy compiler perform all module resolution with a
module resolution cache. Note that the module resolution behavior can be
changed with a custom compiler host, in which case that custom host
implementation is responsible for caching. In the case of the Angular
CLI a custom compiler host with proper module resolution caching is
already in place, so the CLI already has this optimization.
PR Close#34332
The export scope of NgModules from external compilations units, as
present in .d.ts declarations, does not change during a compilation so
can be easily shared. There was already a cache but the computed export
scope was not actually stored there. This commit fixes that.
PR Close#34332
In Ivy it's illegal for a template to write to a template variable. So the
template:
```html
<ng-template let-somevar>
<button (click)="somevar = 3">Set var to 3</button>
</ng-template>
```
is erroneous and previously would fail to compile with an assertion error
from the `TemplateDefinitionBuilder`. This error wasn't particularly user-
friendly, though, as it lacked the context of which template or where the
error occurred.
In this commit, a new check in template type-checking is added which detects
such erroneous writes and produces a true diagnostic with the appropriate
context information.
Closes#33674
PR Close#34339
Previously, the compiler performed an incremental build by analyzing and
resolving all classes in the program (even unchanged ones) and then using
the dependency graph information to determine which .js files were stale and
needed to be re-emitted. This algorithm produced "correct" rebuilds, but the
cost of re-analyzing the entire program turned out to be higher than
anticipated, especially for component-heavy compilations.
To achieve performant rebuilds, it is necessary to reuse previous analysis
results if possible. Doing this safely requires knowing when prior work is
viable and when it is stale and needs to be re-done.
The new algorithm implemented by this commit is such:
1) Each incremental build starts with knowledge of the last known good
dependency graph and analysis results from the last successful build,
plus of course information about the set of files changed.
2) The previous dependency graph's information is used to determine the
set of source files which have "logically" changed. A source file is
considered logically changed if it or any of its dependencies have
physically changed (on disk) since the last successful compilation. Any
logically unchanged dependencies have their dependency information copied
over to the new dependency graph.
3) During the `TraitCompiler`'s loop to consider all source files in the
program, if a source file is logically unchanged then its previous
analyses are "adopted" (and their 'register' steps are run). If the file
is logically changed, then it is re-analyzed as usual.
4) Then, incremental build proceeds as before, with the new dependency graph
being used to determine the set of files which require re-emitting.
This analysis reuse avoids template parsing operations in many circumstances
and significantly reduces the time it takes ngtsc to rebuild a large
application.
Future work will increase performance even more, by tackling a variety of
other opportunities to reuse or avoid work.
PR Close#34288
Previously 'analyze' in the various `DecoratorHandler`s not only extracts
information from the decorators on the classes being analyzed, but also has
several side effects within the compiler:
* it can register metadata about the types involved in global metadata
trackers.
* it can register information about which .ngfactory symbols are actually
needed.
In this commit, these side-effects are moved into a new 'register' phase,
which runs after the 'analyze' step. Currently this is a no-op refactoring
as 'register' is always called directly after 'analyze'. In the future this
opens the door for re-use of prior analysis work (with only 'register' being
called, to apply the above side effects).
Also as part of this refactoring, the reification of NgModule scope
information into the incremental dependency graph is moved to the
`NgtscProgram` instead of the `TraitCompiler` (which now only manages trait
compilation and does not have other side effects).
PR Close#34288
Prior to this commit, the `IvyCompilation` tracked the state of each matched
`DecoratorHandler` on each class in the `ts.Program`, and how they
progressed through the compilation process. This tracking was originally
simple, but had grown more complicated as the compiler evolved. The state of
each specific "target" of compilation was determined by the nullability of
a number of fields on the object which tracked it.
This commit formalizes the process of compilation of each matched handler
into a new "trait" concept. A trait is some aspect of a class which gets
created when a `DecoratorHandler` matches the class. It represents an Ivy
aspect that needs to go through the compilation process.
Traits begin in a "pending" state and undergo transitions as various steps
of compilation take place. The `IvyCompilation` class is renamed to the
`TraitCompiler`, which manages the state of all of the traits in the active
program.
Making the trait concept explicit will support future work to incrementalize
the expensive analysis process of compilation.
PR Close#34288
The `ModuleWithProviders` type has an optional type parameter that
should be specified to indicate what NgModule class will be provided.
This enables the Ivy compiler to statically determine the NgModule type
from the declaration files. This type parameter will become required in
the future, however to aid in the migration the compiler will detect
code patterns where using `ModuleWithProviders` as return type is
appropriate, in which case it transforms the emitted .d.ts files to
include the generic type argument.
This should reduce the number of occurrences where `ModuleWithProviders`
is referenced without its generic type argument.
Resolves FW-389
PR Close#34235
This commit refactors the way the compiler transforms .d.ts files during
ngtsc builds. Previously the `IvyCompilation` kept track of a
`DtsFileTransformer` for each input file. Now, any number of
`DtsTransform` operations that need to be applied to a .d.ts file are
collected in the `DtsTransformRegistry`. These are then ran using a
single `DtsTransformer` so that multiple transforms can be applied
efficiently.
PR Close#34235
The metadata collector for View Engine compilations emits error symbols
for static class members that have not been initialized, which prevents
a library from building successfully when `strictMetadataEmit` is
enabled, which is recommended for libraries to avoid issues in library
consumers. This is troublesome for libraries that are adopting static
members for the Ivy template type checker: these members don't need a
value assignment as only their type is of importance, however this
causes metadata errors. As such, a library used to be required to
initialize the special static members to workaround this error,
undesirably introducing a code-size overhead in terms of emitted
JavaScript code.
This commit modifies the collector logic to specifically ignore
the special static members for Ivy's template type checker, preventing
any errors from being recorded during the metadata collection.
PR Close#34296
For Ivy's template type checker it is possible to let a directive
specify static members to allow a wider type for some input:
```typescript
export class MatSelect {
@Input() disabled: boolean;
static ngAcceptInputType_disabled: boolean | string;
}
```
This allows a binding to the `MatSelect.disabled` input to be of type
boolean or string, whereas the `disabled` property itself is only of
type boolean.
Up until now, any static `ngAcceptInputType_*` property was not
inherited for subclasses of a directive class. This is cumbersome, as
the directive's inputs are inherited, so any acceptance member should as
well. To resolve this limitation, this commit extends the flattening of
directive metadata to include the acceptance members.
Fixes#33830
Resolves FW-1759
PR Close#34296
The compiler exports a `formatDiagnostics` function which consumers can use
to print both ts and ng diagnostics. However, this function was previously
using the "old" style TypeScript diagnostics, as opposed to the modern
diagnostic printer which uses terminal colors and prints additional context
information.
This commit updates `formatDiagnostics` to use the modern formatter, plus to
update Ivy's negative error codes to Angular 'NG' errors.
The Angular CLI needs a little more work to use this function for printing
TS diagnostics, but this commit alone should fix Bazel builds as ngc-wrapped
goes through `formatDiagnostics`.
PR Close#34234
Previously, ternary expressions were emitted as:
condExpr ? trueCase : falseCase
However, this causes problems when ternary operations are nested. In
particular, a template expression of the form:
a?.b ? c : d
would have compiled to:
a == null ? null : a.b ? c : d
The ternary operator is right-associative, so that expression is interpreted
as:
a == null ? null : (a.b ? c : d)
when in reality left-associativity is desired in this particular instance:
(a == null ? null : a.b) ? c : d
This commit adds a check in the expression translator to detect such
left-associative usages of ternaries and to enforce such associativity with
parentheses when necessary.
A test is also added for the template type-checking expression translator,
to ensure it correctly produces right-associative expressions for ternaries
in the user's template.
Fixes#34087
PR Close#34221
Fixes ngtsc incorrectly logging an unknown element diagnostic for HTML elements that are inside an SVG `foreignObject` with the `xhtml` namespace.
Fixes#34171.
PR Close#34178
Now that `@angular/localize` can interpret multiple legacy message ids in the
metablock of a `$localize` tagged template string, this commit adds those
ids to each i18n message extracted from component templates, but only if
the `enableI18nLegacyMessageIdFormat` is not `false`.
PR Close#34135
For injectables, we currently generate a factory function in the
injectable def (prov) that delegates to the factory function in
the factory def (fac). It looks something like this:
```
factory: function(t) { return Svc.fac(t); }
```
The extra wrapper function is unnecessary since the args for
the factory functions are the same. This commit changes the
compiler to generate this instead:
```
factory: Svc.fac
```
Because we are generating less code for each injectable, we
should see some modest code size savings. AIO's main bundle
is about 1 KB smaller.
PR Close#34076
Previously, the Angular AOT compiler would always add a
`ɵprov` to injectables. But in ngcc this resulted in duplicate `ɵprov`
properties since published libraries already have this property.
Now in ngtsc, trying to add a duplicate `ɵprov` property is an error,
while in ngcc the additional property is silently not added.
// FW-1750
PR Close#34085
When creating synthesized tagged template literals, one must provide both
the "cooked" text and the "raw" (unparsed) text. Previously there were no
good APIs for creating the AST nodes with raw text for such literals.
Recently the APIs were improved to support this, and they do an extra
check to ensure that the raw text parses to be equal to the cooked text.
It turns out there is a bug in this check -
see https://github.com/microsoft/TypeScript/issues/35374.
This commit works around the bug by synthesizing a "head" node and morphing
it by changing its `kind` into the required node type.
// FW-1747
PR Close#34065
In ViewEngine we were only generating code for exported classes, however with Ivy we do it no matter whether the class has been exported or not. These changes add an extra flag that allows consumers to opt into the ViewEngine behavior. The flag works by treating non-exported classes as if they're set to `jit: true`.
Fixes#33724.
PR Close#33921
Previously, our incremental build system kept track of the changes between
the current compilation and the previous one, and used its knowledge of
inter-file dependencies to evaluate the impact of each change and emit the
right set of output files.
However, a problem arose if the compiler was not able to extract a
dependency graph successfully. This typically happens if the input program
contains errors. In this case the Angular analysis part of compilation is
never executed.
If a file changed in one of these failed builds, in the next build it
appears unchanged. This means that the compiler "forgets" to emit it!
To fix this problem, the compiler needs to know the set of changes made
_since the last successful build_, not simply since the last invocation.
This commit changes the incremental state system to much more explicitly
pass information from the previous to the next compilation, and in the
process to keep track of changes across multiple failed builds, until the
program can be analyzed successfully and the results of those changes
incorporated into the emit plan.
Fixes#32214
PR Close#33971
Recently the ngtsc translator was modified to be more `ScriptTarget`
aware, which basically means that it will not generate non-ES5 code
when the output format is ES5 or similar.
This commit enhances that change by also "downleveling" localized
messages. In ES2015 the messages use tagged template literals, which
are not available in ES5.
PR Close#33857
Due to the fact that Tsickle runs between analyze and transform phases in Angular, Tsickle may transform nodes (add comments with type annotations for Closure) that we captured during the analyze phase. As a result, some patterns where a function is returned from another function may trigger automatic semicolon insertion, which breaks the code (makes functions return `undefined` instead of a function). In order to avoid the problem, this commit updates the code to wrap all functions in some expression ("privders" and "viewProviders") in parentheses. More info can be found in Tsickle source code here: d797426257/src/jsdoc_transformer.ts (L1021)
PR Close#33609
When ngtsc comes across a source file during partial evaluation, it
would determine all exported symbols from that module and evaluate their
values greedily. This greedy evaluation strategy introduces unnecessary
work and can fall into infinite recursion when the evaluation result of
an exported expression would circularly depend on the source file. This
would primarily occur in CommonJS code, where the `exports` variable can
be used to refer to an exported variable. This variable would be
resolved to the source file itself, thereby greedily evaluating all
exported symbols and thus ending up evaluating the `exports` variable
again. This variable would be resolved to the source file itself,
thereby greedily evaluating all exported symbols and thus ending u
evaluating the `exports` variable again. This variable would be
resolved to the source file itself, thereby greedily evaluating all
exported symbols and thus ending up evaluating the `exports` variable
again. This variable would be resolved to the source file itself,
thereby greedily evaluating all exported symbols and thus ending up
evaluating the `exports` variable again. This went on for some time
until all stack frames were exhausted.
This commit introduces a `ResolvedModule` that delays the evaluation of
its exports until they are actually requested. This avoids the circular
dependency when evaluating `exports`, thereby fixing the issue.
Fix#33734
PR Close#33772
The template type checker generates code to check directive inputs and
outputs, whose name may contain characters that can not be used as
identifier in TypeScript. Prior to this change, such names would be
emitted into the generated code as is, resulting in invalid code and
unexpected template type check errors.
This commit fixes the bug by representing the potentially invalid names
as string literal instead of raw identifier.
Fixes#33590
PR Close#33741
This commit transforms the setClassMetadata calls generated by ngtsc from:
```typescript
/*@__PURE__*/ setClassMetadata(...);
```
to:
```typescript
/*@__PURE__*/ (function() {
setClassMetadata(...);
})();
```
Without the IIFE, terser won't remove these function calls because the
function calls have arguments that themselves are function calls or other
impure expressions. In order to make the whole block be DCE-ed by terser,
we wrap it into IIFE and mark the IIFE as pure.
It should be noted that this change doesn't have any impact on CLI* with
build-optimizer, which removes the whole setClassMetadata block within
the webpack loader, so terser or webpack itself don't get to see it at
all. This is done to prevent cross-chunk retention issues caused by
webpack's internal module registry.
* actually we do expect a short-term size regression while
https://github.com/angular/angular-cli/pull/16228
is merged and released in the next rc of the CLI. But long term this
change does nothing to CLI + build-optimizer configuration and is done
primarly to correct the seemingly correct but non-function PURE annotation
that builds not using build-optimizer could rely on.
PR Close#33337
NgModules in Ivy have a definition which contains various different bits
of metadata about the module. In particular, this metadata falls into two
categories:
* metadata required to use the module at runtime (for bootstrapping, etc)
in AOT-only applications.
* metadata required to depend on the module from a JIT-compiled app.
The latter metadata consists of the module's declarations, imports, and
exports. To support JIT usage, this metadata must be included in the
generated code, especially if that code is shipped to NPM. However, because
this metadata preserves the entire NgModule graph (references to all
directives and components in the app), it needs to be removed during
optimization for AOT-only builds.
Previously, this was done with a clever design:
1. The extra metadata was added by a function called `setNgModuleScope`.
A call to this function was generated after each NgModule.
2. This function call was marked as "pure" with a comment and used
`noSideEffects` internally, which causes optimizers to remove it.
The effect was that in dev mode or test mode (which use JIT), no optimizer
runs and the full NgModule metadata was available at runtime. But in
production (presumably AOT) builds, the optimizer runs and removes the JIT-
specific metadata.
However, there are cases where apps that want to use JIT in production, and
still make an optimized build. In this case, the JIT-specific metadata would
be erroneously removed. This commit solves that problem by adding an
`ngJitMode` global variable which guards all `setNgModuleScope` calls. An
optimizer can be configured to statically define this global to be `false`
for AOT-only builds, causing the extra metadata to be stripped.
A configuration for Terser used by the CLI is provided in `tooling.ts` which
sets `ngJitMode` to `false` when building AOT apps.
PR Close#33671
The Ivy template type-checker is capable of inferring the type of a
structural directive (such as NgForOf<T>). Previously, this was done with
fullTemplateTypeCheck: true, even if strictTemplates was false. View Engine
previously did not do this inference, and so this causes breakages if the
type of the template context is not what the user expected.
In particular, consider the template:
```html
<div *ngFor="let user of users as all">
{{user.index}} out of {{all.length}}
</div>
```
As long as `users` is an array, this seems reasonable, because it appears
that `all` is an alias for the `users` array. However, this is misleading.
In reality, `NgForOf` is rendered with a template context that contains
both a `$implicit` value (for the loop variable `user`) as well as a
`ngForOf` value, which is the actual value assigned to `all`. The type of
`NgForOf`'s template context is `NgForContext<T>`, which declares `ngForOf`'s
type to be `NgIterable<T>`, which does not have a `length` property (due to
its incorporation of the `Iterable` type).
This commit stops the template type-checker from inferring template context
types unless strictTemplates is set (and strictInputTypes is not disabled).
Fixes#33527.
PR Close#33537
This commit changes the reporting of watch mode diagnostics for ngtsc to use
the same formatting as non-watch mode diagnostics. This prints rich and
contextual errors even in watch mode, which previously was not the case.
Fixes#32213
PR Close#33862
Previously, the ngtsc compiler attempted to reuse analysis work from the
previous program during an incremental build. To do this, it had to prove
that the work was safe to reuse - that no changes made to the new program
would invalidate the previous analysis.
The implementation of this had a significant design flaw: if the previous
program had errors, the previous analysis would be missing significant
information, and the dependency graph extracted from it would not be
sufficient to determine which files should be re-analyzed to fill in the
gaps. This often meant that the build output after an error was resolved
would be wholly incorrect.
This commit switches ngtsc to take a simpler approach to incremental
rebuilds. Instead of attempting to reuse prior analysis work, the entire
program is re-analyzed with each compilation. This is actually not as
expensive as one might imagine - analysis is a fairly small part of overall
compilation time.
Based on the dependency graph extracted during this analysis, the compiler
then can make accurate decisions on whether to emit specific files. A new
suite of tests is added to validate behavior in the presence of source code
level errors.
This new approach is dramatically simpler than the previous algorithm, and
should always produce correct results for a semantically correct program.s
Fixes#32388Fixes#32214
PR Close#33862
Previously, the compiler assumed that all TS files logically within a
project existed under one or more "root directories". If the TS compiler
option `rootDir` or `rootDirs` was set, they would dictate the root
directories in use, otherwise the current directory was used.
Unfortunately this assumption was unfounded - it's common for projects
without explicit `rootDirs` to import from files outside the current
working directory. In such cases the `LogicalProjectStrategy` would attempt
to generate imports into those files, and fail. This would lead to no
`ReferenceEmitStrategy` being able to generate an import, and end in a
compiler assertion failure.
This commit introduces a new strategy to use when there are no `rootDirs`
explicitly present, the `RelativePathStrategy`. It uses simpler, filesystem-
relative paths to generate imports, even to files above the current working
directory.
Fixes#33659Fixes#33562
PR Close#33828
This commit adds the ability to change directories using the compiler's
internal filesystem abstraction. This is a prerequisite for writing tests
which are sensitive to the current working directory.
In addition to supporting the `chdir()` operation, this commit also fixes
`getDefaultLibLocation()` for mock filesystems to not assume `node_modules`
is in the current directory, but to resolve it similarly to how Node does
by progressively looking higher in the directory tree.
PR Close#33828
Since i18n messages are mapped to `$localize` tagged template strings,
the "raw" version must be properly escaped. Otherwise TS will throw an
error such as:
```
Error: Debug Failure. False expression: Expected argument 'text' to be the normalized (i.e. 'cooked') version of argument 'rawText'.
```
This commit ensures that we properly escape these raw strings before creating
TS AST nodes from them.
PR Close#33820
The `:` char is used as a metadata marker in `$localize` messages.
If this char appears in the metadata it must be escaped, as `\:`.
Previously, although the `:` char was being escaped, the TS AST
being generated was not correct and so it was being output double
escaped, which meant that it appeared in the rendered message.
As of TS 3.6.2 the "raw" string can be specified when creating tagged
template AST nodes, so it is possible to correct this.
PR Close#33820
In View Engine, providers which neither used `useValue`, `useClass`,
`useFactory` or `useExisting`, were interpreted differently.
e.g.
```
{provide: X} -> {provide: X, useValue: undefined}, // this is how it works in View Engine
{provide: X} -> {provide: X, useClass: X}, // this is how it works in Ivy
```
The missing-injectable migration should migrate such providers to the
explicit `useValue` provider. This ensures that there is no unexpected
behavioral change when updating to v9.
PR Close#33709
The following files are consumed only by the language service and do not
have to be in compiler-cli:
1. expression_diagnostics.ts
2. expression_type.ts
3. typescript_symbols.ts
4. symbols.ts
PR Close#33809
Previously, ngcc's `Renderer` would add some constants in the processed
files which were emitted as ES2015 code (e.g. `const` declarations).
This would result in invalid ES5 generated code that would break when
run on browsers that do not support the emitted format.
This commit fixes it by adding a `printStatement()` method to
`RenderingFormatter`, which can convert statements to JavaScript code in
a suitable format for the corresponding `RenderingFormatter`.
Additionally, the `translateExpression()` and `translateStatement()`
ngtsc helper methods are augmented to accept an extra hint to know
whether the code needs to be translated to ES5 format or not.
Fixes#32665
PR Close#33514
While processing class metadata, ngtsc generates a `setClassMetadata()`
call which (among other things) contains info about property decorators.
Previously, processing getter/setter pairs with some of ngcc's
`ReflectionHost`s resulted in multiple metadata entries for the same
property, which resulted in duplicate object keys, which in turn causes
an error in ES5 strict mode.
This commit fixes it by ensuring that there are no duplicate property
names in the `setClassMetadata()` calls.
In addition, `generateSetClassMetadataCall()` is updated to treat
`ClassMember#decorators: []` the same as `ClassMember.decorators: null`
(i.e. omitting the `ClassMember` from the generated `setClassMetadata()`
call). Alternatively, ngcc's `ReflectionHost`s could be updated to do
this transformation (`decorators: []` --> `decorators: null`) when
reflecting on class members, but this would require changes in many
places and be less future-proof.
For example, given a class such as:
```ts
class Foo {
@Input() get bar() { return 'bar'; }
set bar(value: any) {}
}
```
...previously the generated `setClassMetadata()` call would look like:
```ts
ɵsetClassMetadata(..., {
bar: [{type: Input}],
bar: [],
});
```
The same class will now result in a call like:
```ts
ɵsetClassMetadata(..., {
bar: [{type: Input}],
});
```
Fixes#30569
PR Close#33514
Previously, due to a bug a `Context` with `isStatement: false` could be
returned in places where a `Context` with `isStatement: true` was
requested. As a result, some statements would be unnecessarily wrapped
in parenthesis.
This commit fixes the bug in `Context#withStatementMode` to always
return a `Context` with the correct `isStatement` value. Note that this
does not have any impact on the generated code other than avoiding some
superfluous parenthesis on certain statements.
PR Close#33514
During incremental compilations, ngtsc needs to know which metadata
from a previous compilation can be reused, versus which metadata has to
be recomputed as some dependency was updated. Changes to
directives/components should cause the NgModule in which they are
declared to be recompiled, as the NgModule's compilation is dependent
on its directives/components.
When a dependent source file of a directive/component is updated,
however, a more subtle dependency should also cause to NgModule's source
file to be invalidated. During the reconciliation of state from a
previous compilation into the new program, the component's source file
is invalidated because one of its dependency has changed, ergo the
NgModule needs to be invalidated as well. Up until now, this implicit
dependency was not imposed on the NgModule. Additionally, any change to
a dependent file may influence the module scope to change, so all
components within the module must be invalidated as well.
This commit fixes the bug by introducing additional file dependencies,
as to ensure a proper rebuild of the module scope and its components.
Fixes#32416
PR Close#33522
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.
There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.
Fixes#32869
PR Close#33551
Similar to https://github.com/angular/angular/pull/33633, this commit is
needed to fix an outage with the Angular Kythe indexer.
Crash logs:
```
TypeError: Cannot read property 'text' of undefined
at NodeObject.getFullText (typescript/stable/lib/typescript.js:121443:57)
at FactoryGenerator.generate (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/factory_generator.ts:67:34)
at GeneratedShimsHostWrapper.getSourceFile (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/host.ts:88:26)
at findSourceFile (typescript/stable/lib/typescript.js:90654:29)
at typescript/stable/lib/typescript.js:90553:85
at getSourceFileFromReferenceWorker (typescript/stable/lib/typescript.js:90520:34)
at processSourceFile (typescript/stable/lib/typescript.js:90553:13)
at processRootFile (typescript/stable/lib/typescript.js:90383:13)
at typescript/stable/lib/typescript.js:89399:60
at Object.forEach (typescript/stable/lib/typescript.js:280:30)
```
PR Close#33660
When the Angular compiler is operated through the ngc binary in watch
mode, changing a template in an external file would not cause the
component to be recompiled if Ivy is enabled.
There was a problem with how a cached compiler host was present that was
unaware of the changed resources, therefore failing to trigger a
recompilation of a component whenever its template changes. This commit
fixes the issue by ensuring that information about modified resources is
correctly available to the cached compiler host.
Fixes#32869
PR Close#33551
When template type checking is configured with `strictDomEventTypes` or
`strictOutputEventTypes` disabled, in compilation units that have
`noImplicitAny` enabled but `strictNullChecks` disabled, a template type
checking error could be produced for certain event handlers.
The error is avoided by letting an event handler in the generated TCB
always have an explicit `any` return type.
Fixes#33528
PR Close#33550
We already have special cases for the `__spread` helper function and with this change we handle the new tslib helper introduced in version 1.10 `__spreadArrays`.
For more context see: https://github.com/microsoft/tslib/releases/tag/1.10.0Fixes: #33614
PR Close#33617
This commit fixes a crash in the Angular Kythe indexer caused by failure
to retrieve `SourceFile` in a `Statement`.
Crash logs:
TypeError: Cannot read property 'text' of undefined
at Object.getTokenPosOfNode (typescript/stable/lib/typescript.js:8957:72)
at NodeObject.getStart (typescript/stable/lib/typescript.js:121419:23)
at NodeObject.getLeadingTriviaWidth (typescript/stable/lib/typescript.js:121439:25)
at FactoryGenerator.generate (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/factory_generator.ts:64:49)
at GeneratedShimsHostWrapper.getSourceFile (angular2/rc/packages/compiler-cli/src/ngtsc/shims/src/host.ts:88:26)
at findSourceFile (typescript/stable/lib/typescript.js:90654:29)
at typescript/stable/lib/typescript.js:90553:85
at getSourceFileFromReferenceWorker (typescript/stable/lib/typescript.js:90520:34)
at processSourceFile (typescript/stable/lib/typescript.js:90553:13)
at processRootFile (typescript/stable/lib/typescript.js:90383:13)
PR Close#33588